Structural, magnetic and magnetocaloric study of Ni0.5Zn0.5Fe2O4 spinel

被引:0
作者
B. Rabi
A. Essoumhi
M. Sajieddine
J. M. Greneche
E. K. Hlil
A. Razouk
M. A. Valente
机构
[1] Université Sultan Moulay Slimane,Laboratoire de Physique des Matériaux, FST
[2] Université Sultan Moulay Slimane,Laboratoire des Procédés Chimiques et Matériaux Appliqués, FP
[3] Institut des Molécules et Matériaux du Mans (IMMM),Institut Néel
[4] UMR CNRS 6283,I3N and Physics Department
[5] CNRS - Université Grenoble Alpes,undefined
[6] University of Aveiro,undefined
来源
Applied Physics A | 2020年 / 126卷
关键词
Nickel–zinc ferrite nanoparticles; X-ray diffraction; Fe Mössbauer spectrometry; Magnetic properties; Magnetocaloric effect;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this work was to study the influence of annealing temperature on the structural changes and magnetic properties of the Ni0.5Zn0.5Fe2O4 spinel-type nanoparticles. The nanomaterial was prepared by the chemical co-precipitation method and studied by thermal analysis (TG–DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), magnetic measurements and 57Fe Mössbauer spectrometry. XRD has revealed that the as-prepared sample shows poor crystallization with less defined diffraction lines. As the annealing temperature increases, the diffraction peaks become intense and well defined, reflecting perfect crystallization of the sample. The estimated crystallite size varies from 25 to 83 nm. TEM observations give information on the morphology and confirm the XRD results. To quantify the proportions of the iron atoms in the tetrahedral and octahedral sites, in-field Mössbauer spectrometry measurements were carried out at low temperature. Saturation magnetization (Ms) and the average hyperfine magnetic field Bhf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {\left\langle {B_{\text{hf}} } \right\rangle } \right) $$\end{document} increase gradually with annealing temperature. For the sample annealed at 1000 °C, the magnetic entropy change ΔSMmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left| {\Delta S_{\text{M}}^{\hbox{max} } } \right| $$\end{document} and relative cooling power, measured under field change of 2T, are 0.67 J kg−1 K−1 and 112.5 J kg−1, respectively.
引用
收藏
相关论文
共 200 条
[1]  
Veena Gopalan E(2009)Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites J. Magn. Magn. Mater. 321 1092-1099
[2]  
Al-Omari IA(2010)Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite J. Appl. Phys. 108 93920-107
[3]  
Malini KA(2014)Enhanced relative cooling power of Ni Acta Mater. 71 100-238
[4]  
Joy PA(2000)Zn Acta Mater. 48 223-1329
[5]  
Kumar DS(1998)Fe J. Appl. Phys. 84 1101-3237
[6]  
Yoshida Y(2001)O J. Mater. Sci. Lett. 20 1327-1721
[7]  
Anantharaman MR(2002) (0.0 ≤  J. Phys.: Condens. Matter. 14 3221-141
[8]  
Jadhav SS(2011) ≤ 0.7) ferrites J. Magn. Magn. Mater. 323 1717-837
[9]  
Shirsath SE(2005)Nano-scale materials development for future magnetic applications J. Magn. Magn. Mater. 289 139-170
[10]  
Patange SM(2004)Structural and magnetic properties of ball milled copper ferrite Mater. Res. Bull. 39 833-396