Parity binomial edge ideals

被引:0
作者
Thomas Kahle
Camilo Sarmiento
Tobias Windisch
机构
[1] Otto-von-Guericke Universität Magdeburg,
来源
Journal of Algebraic Combinatorics | 2016年 / 44卷
关键词
Binomial ideals; Primary decomposition; Mesoprimary decomposition; Binomial edge ideals; Markov bases; Primary 05E40; Secondary 13P10; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
Parity binomial edge ideals of simple undirected graphs are introduced. Unlike binomial edge ideals, they do not have square-free Gröbner bases and are radical if and only if the graph is bipartite or the characteristic of the ground field is not two. The minimal primes are determined and shown to encode combinatorics of even and odd walks in the graph. A mesoprimary decomposition is determined and shown to be a primary decomposition in characteristic two.
引用
收藏
页码:99 / 117
页数:18
相关论文
共 33 条
[1]  
Bayer D(2001)Syzygies of unimodular Lawrence ideals Journal für die Reine und Angewandte Mathematik 534 169-186
[2]  
Popescu S(2015)Detecting binomiality Adv. Appl. Math. 71 52-67
[3]  
Sturmfels B(1996)Binomial ideals Duke Math. J. 84 1-45
[4]  
Conradi C(1995)On the minors of an incidence matrix and its Smith normal form Linear Algebra Appl. 218 213-224
[5]  
Kahle T(2010)Binomial edge ideals and conditional independence statements Adv. Appl. Math. 45 317-333
[6]  
Eisenbud D(2015)On the ideal of orthogonal representations of a graph Adv. Appl. Math. 71 146-173
[7]  
Sturmfels B(2000)Primary decomposition of lattice basis ideals J. Symb. Comput. 29 625-639
[8]  
Grossman JW(2004)Ideals of adjacent minors J. Algebra 277 615-642
[9]  
Kulkarni DM(2012)Decompositions of binomial ideals J. Softw. Algebra Geom. 4 1-5
[10]  
Schochetman IE(2014)Decompositions of commutative monoid congruences and binomial ideals Algebra Number Theory 8 1297-1364