How bad can a banach space with approximation property be? II

被引:0
作者
Reinov O.I.
机构
关键词
Banach Space; Approximation Property;
D O I
10.1023/A:1020010209714
中图分类号
学科分类号
摘要
This paper is a continuation of [1] where the question "How bad can a Banach space with approximation property bel" is discussed. Some results of [ 1 ] and [2] are generalized. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:4065 / 4072
页数:7
相关论文
共 16 条
[1]  
Reinov O.I., How bad can a Banach space with approximation property be?, Mat. Zametki [In Russian], 33, 6, pp. 833-846, (1983)
[2]  
Reinov O.I., Estonian Ac Ad. Sci. Phis. Math., 46, 23, pp. 226-233, (1996)
[3]  
Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16
[4]  
Diestel J., Uhl J.J., Vector measures, Math. Survey, 15, (1977)
[5]  
Lindenstrauss J., Tzafriri L., Classical Banach Spaces I: Sequence Spaces, (1977)
[6]  
Szankowski A., Subspaces without approximation property,, Israel J. Math., 30, pp. 123-130, (1978)
[7]  
Grnbaeck N., Willis G.A., Approximate identities in Banach algebras of compact operators., Canadian Math. Bui, 36, pp. 45-53, (1993)
[8]  
Lima A., Nygaard O., Oja E., Isometric factorization of weakly compact operators and the approximation property,, Israel J. Math., 119, pp. 325-348, (2000)
[9]  
Figiel T., Johnson W.B., The approximation property does not imply the bounded approximation property,, Proc. Amer. Math. Soc., 41, pp. 197-200, (1973)
[10]  
Casazza P.G., Jarchow H., Self-induced compactness in Banach spaces, Proc. Edinburg Math. Soc. A, 126, pp. 355-362, (1996)