Some Tauberian theorems for four-dimensional Euler and Borel summability

被引:0
作者
Fatih Nuray
Richard F Patterson
机构
[1] Afyon Kocatepe University,Department of Mathematics
[2] University of North Florida,Department of Mathematics and Statistics
来源
Advances in Difference Equations | / 2015卷
关键词
Tauberian condition; Euler-Knopp means; Borel method; four-dimensional summability method; double sequences; Pringsheim limit; 40B05; 40C05;
D O I
暂无
中图分类号
学科分类号
摘要
The four-dimensional summability methods of Euler and Borel are studied as mappings from absolutely convergent double sequences into themselves. Also the following Tauberian results are proved: if x=(xm,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=(x_{m,n})$\end{document} is a double sequence that is mapped into ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{2}$\end{document} by the four-dimensional Borel method and the double sequence x satisfies ∑m=0∞∑n=0∞|Δ10xm,n|mn<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}|\Delta_{10} x_{m,n}|\sqrt {mn}<\infty$\end{document} and ∑m=0∞∑n=0∞|Δ01xm,n|mn<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}|\Delta_{01} x_{m,n}|\sqrt {mn}<\infty$\end{document}, then x itself is in ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{2}$\end{document}.
引用
收藏
相关论文
共 5 条
[1]  
Robison GM(1926)Divergent double sequences and series Trans. Am. Math. Soc. 28 50-73
[2]  
Hamilton HJ(1936)Transformations of multiple sequences Duke Math. J. 2 29-60
[3]  
Fridy JA(1980)Some Tauberian theorems for Euler and Borel summability Int. J. Math. Math. Sci. 3 731-738
[4]  
Roberts KL(2004)Four dimensional matrix characterization of absolute summability Soochow J. Math. 30 21-26
[5]  
Patterson RF(undefined)undefined undefined undefined undefined-undefined