Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms

被引:0
作者
Athanassios Koutsonas
Dimitrios M. Thilikos
机构
[1] National and Kapodistrian University of Athens,
来源
Algorithmica | 2011年 / 60卷
关键词
Branchwidth; Parameterized algorithms; Feedback vertex set; Face cover;
D O I
暂无
中图分类号
学科分类号
摘要
The Planar Feedback Vertex Set problem asks whether an n-vertex planar graph contains at most k vertices meeting all its cycles. The Face Cover problem asks whether all vertices of a plane graph G lie on the boundary of at most k faces of G. Standard techniques from parameterized algorithm design indicate that both problems can be solved by sub-exponential parameterized algorithms (where k is the parameter). In this paper we improve the algorithmic analysis of both problems by proving a series of combinatorial results relating the branchwidth of planar graphs with their face cover. Combining this fact with duality properties of branchwidth, allows us to derive analogous results on feedback vertex set. As a consequence, it follows that Planar Feedback Vertex Set and Face Cover can be solved in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(2^{15.11\cdot\sqrt{k}}+n^{2})$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(2^{10.1\cdot\sqrt {k}}+n^{2})$\end{document} steps, respectively.
引用
收藏
页码:987 / 1003
页数:16
相关论文
共 42 条
[1]  
Becker A.(2000)Randomized algorithms for the loop cutset problem J. Artif. Intell. Res. 12 219-234
[2]  
Bar-Yehuda R.(2008)Improved algorithms for feedback vertex set problems J. Comput. Syst. Sci. 74 1188-1198
[3]  
Geiger D.(1998)A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs Oper. Res. Lett. 22 111-118
[4]  
Chen J.(2005)Subexponential parameterized algorithms on bounded-genus graphs and J. ACM 52 866-893
[5]  
Fomin F.V.(2005)-minor-free graphs Algorithmica 41 245-267
[6]  
Liu Y.(2008)Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing graphs as minors Comput. Sci. Rev. 2 29-39
[7]  
Lu S.(2006)Subexponential parameterized algorithms SIAM J. Comput. 36 281-309
[8]  
Villanger Y.(2006)Dominating sets in planar graphs: branch-width and exponential speed-up J. Graph Theory 51 53-81
[9]  
Chudak F.A.(2008)New upper bounds on the decomposability of planar graphs Algorithmica 52 293-307
[10]  
Goemans M.X.(1998)On the minimum feedback vertex set problem: exact and enumeration algorithms Combinatorica 18 37-59