A Probabilistic Proof of an Asymptotic Formula for the Modified Bessel Function

被引:0
作者
Bujar Xh. Fejzullahu
机构
[1] University of Prishtina,Department of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Bessel functions; basic discrete probability distributions; local limit theorem; 33C10; 60E05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the local limit theorem for lattice distributions has been applied to deduce the asymptotic behavior (as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}) for the modified Bessel function Iν-βn(2xλαn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\nu -\beta _n}( 2x\sqrt{\lambda \alpha _n})$$\end{document}, where (αn)n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha _n)_{n\in {\mathbb {N}}}$$\end{document} and (βn)n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta _n)_{n\in {\mathbb {N}}}$$\end{document} are any two increasing sequences of natural numbers such that (λαn-βn)22λαn→μλ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{(\lambda \alpha _n-\beta _n)^2}{2\lambda \alpha _n}\rightarrow \mu _\lambda \ge 0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}, λ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0,$$\end{document} and ν≥0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu \ge 0.$$\end{document} Our asymptotics is uniformly valid in the compact subsets of (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document}.
引用
收藏
相关论文
共 11 条
  • [1] Athreya KB(1987)Modified Bessel function asymptotics via probability Statist. Probab. Lett. 5 325-327
  • [2] Chinta G(2010)Zeta functions, heat kernels, and spectral asymptotics on degenerating families of discrete tori Nagoya Math. J. 198 121-172
  • [3] Jorgenson J(1990)Some asymptotic formulas for cylindrical Bessel functions (Russian) Ž. Vyčisl. Mat i Mat. Fiz. 30 1775-1784
  • [4] Karlsson A(2010)Exact simulation of Bessel diffusions Monte Carlo Methods Appl. 16 283-306
  • [5] Kerimov MK(1983)Probabilistic proofs of some formulas for Bessel functions, Nederl. Akad. Wetensch Indag. Math. 45 343-359
  • [6] Skorokhodov SL(1964)An asymptotic formula for the Bessel function (Russian) Ž. Vyčisl. Mat i Mat. Fiz. 4 1097-1102
  • [7] Makarov RN(undefined)undefined undefined undefined undefined-undefined
  • [8] Glew D(undefined)undefined undefined undefined undefined-undefined
  • [9] Stadje W(undefined)undefined undefined undefined undefined-undefined
  • [10] Vilenkin NJ(undefined)undefined undefined undefined undefined-undefined