Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates

被引:0
|
作者
Thomas Chen
Ryan Denlinger
Nataša Pavlović
机构
[1] University of Texas at Austin,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new analysis of the Boltzmann equation with a constant collision kernel in two space dimensions. The scaling-critical Lebesgue space is Lx,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{x,v}$$\end{document}; we prove the global well-posedness and a version of scattering, assuming that the data f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0$$\end{document} is sufficiently smooth and localized, and the Lx,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{x,v}$$\end{document} norm of f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0$$\end{document} is sufficiently small. The proof relies upon a new scaling-critical bilinear spacetime estimate for the collision “gain” term in Boltzmann’s equation, combined with a novel application of the Kaniel–Shinbrot iteration.
引用
收藏
页码:327 / 381
页数:54
相关论文
共 50 条