Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates

被引:0
|
作者
Thomas Chen
Ryan Denlinger
Nataša Pavlović
机构
[1] University of Texas at Austin,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new analysis of the Boltzmann equation with a constant collision kernel in two space dimensions. The scaling-critical Lebesgue space is Lx,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{x,v}$$\end{document}; we prove the global well-posedness and a version of scattering, assuming that the data f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0$$\end{document} is sufficiently smooth and localized, and the Lx,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{x,v}$$\end{document} norm of f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0$$\end{document} is sufficiently small. The proof relies upon a new scaling-critical bilinear spacetime estimate for the collision “gain” term in Boltzmann’s equation, combined with a novel application of the Kaniel–Shinbrot iteration.
引用
收藏
页码:327 / 381
页数:54
相关论文
共 50 条
  • [21] Well-posedness and global existence for the Novikov equation
    Wu, Xinglong
    Yin, Zhaoyang
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (03) : 707 - 727
  • [22] Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff
    Alexandre, Radjesvarane
    Morimoto, Y.
    Ukai, S.
    Xu, Chao-Jiang
    Yang, T.
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (15-16) : 867 - 871
  • [23] Small Data Global Well-Posedness and Scattering for the Inhomogeneous Nonlinear Schrodinger Equation in Hs(Rn)
    An, JinMyong
    Kim, JinMyong
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (04): : 453 - 475
  • [24] Global Well-Posedness for the Massive Maxwell–Klein–Gordon Equation with Small Critical Sobolev Data
    Cristian Gavrus
    Annals of PDE, 2019, 5
  • [25] Local and global well-posedness for the Ostrovsky equation
    Linares, F
    Milanés, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) : 325 - 340
  • [26] Local well-posedness for periodic Benjamin equation with small initial data
    Shi, Shaoguang
    Li, Junfeng
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 15
  • [27] NONNEGATIVITY AND WELL-POSEDNESS OF THE REGULAR SOLUTION OF THE MAGNETIZED BOLTZMANN EQUATION
    Dongo, David
    Djiofack, Francis Etienne
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 85 (02) : 193 - 208
  • [28] Local well-posedness for periodic Benjamin equation with small initial data
    Shaoguang Shi
    Junfeng Li
    Boundary Value Problems, 2015
  • [29] Oscillatory integral estimates and global well-posedness for the 2D Boussinesq equation
    Luiz Gustavo Farah
    Frederic Rousset
    Nikolay Tzvetkov
    Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 655 - 679
  • [30] Oscillatory integral estimates and global well-posedness for the 2D Boussinesq equation
    Farah, Luiz Gustavo
    Rousset, Frederic
    Tzvetkov, Nikolay
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (04): : 655 - 679