Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates

被引:0
|
作者
Thomas Chen
Ryan Denlinger
Nataša Pavlović
机构
[1] University of Texas at Austin,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new analysis of the Boltzmann equation with a constant collision kernel in two space dimensions. The scaling-critical Lebesgue space is Lx,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{x,v}$$\end{document}; we prove the global well-posedness and a version of scattering, assuming that the data f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0$$\end{document} is sufficiently smooth and localized, and the Lx,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2_{x,v}$$\end{document} norm of f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_0$$\end{document} is sufficiently small. The proof relies upon a new scaling-critical bilinear spacetime estimate for the collision “gain” term in Boltzmann’s equation, combined with a novel application of the Kaniel–Shinbrot iteration.
引用
收藏
页码:327 / 381
页数:54
相关论文
共 50 条
  • [1] Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates
    Chen, Thomas
    Denlinger, Ryan
    Pavlovic, Natasa
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (01) : 327 - 381
  • [2] GLOBAL WELL-POSEDNESS OF THE RELATIVISTIC BOLTZMANN EQUATION
    Wang, Yong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5637 - 5694
  • [3] Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data
    Renjun Duan
    Feimin Huang
    Yong Wang
    Tong Yang
    Archive for Rational Mechanics and Analysis, 2017, 225 : 375 - 424
  • [4] Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data
    Duan, Renjun
    Huang, Feimin
    Wang, Yong
    Yang, Tong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 375 - 424
  • [5] Global well-posedness of a binary-ternary Boltzmann equation
    Ampatzoglou, Ioakeim
    Gamba, Irene M.
    Pavlovic, Natasa
    Taskovic, Maja
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (02): : 327 - 369
  • [6] Global well-posedness of a binary-ternary Boltzmann equation
    Ampatzoglou, Ioakeim
    Gamba, Irene M.
    Pavlovic, Natasa
    Taskovic, Maja
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2022, 39 (02): : 327 - 369
  • [7] Global Well-Posedness of the Spatially Homogeneous Hubbard-Boltzmann Equation
    Lukkarinen, Jani
    Mei, Peng
    Spohn, Herbert
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (05) : 758 - 807
  • [8] Global Well-Posedness in Spatially Critical Besov Space for the Boltzmann Equation
    Duan, Renjun
    Liu, Shuangqian
    Xu, Jiang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) : 711 - 745
  • [9] Global Well-Posedness in Spatially Critical Besov Space for the Boltzmann Equation
    Renjun Duan
    Shuangqian Liu
    Jiang Xu
    Archive for Rational Mechanics and Analysis, 2016, 220 : 711 - 745
  • [10] Small data global well-posedness for the nonlinear wave equation with nonlocal nonlinearity
    Cheng, Xing
    Gao, Yanfang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (01) : 99 - 112