Riesz bases formed by root functions of a functional-differential equation with a reflection operator

被引:0
作者
V. P. Kurdyumov
A. P. Khromov
机构
[1] Saratov State University,
来源
Differential Equations | 2008年 / 44卷
关键词
Entire Function; Vector Function; Bounded Variation; Constant Independent; RIESZ Base;
D O I
暂无
中图分类号
学科分类号
摘要
We find conditions under which the system of root functions of the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L_y = l[y] = ay'(x) + y'(1 - x) + p_1 (x)y(x) + p_2 (x)y(1 - x),x \in [0,1],U_1 (y) = \int\limits_0^1 {y(t)d\sigma (t) = 0,} $$\end{document} is a Riesz basis in L2[0, 1].
引用
收藏
页码:203 / 212
页数:9
相关论文
共 14 条
[1]  
Babbege Ch.(1816)undefined Philosophical Transactions of the Royal Soc. of London 11 179-256
[2]  
Dunkl Ch.(1989)undefined Trans. Amer. Math. Soc. 311 167-183
[3]  
Andreev A.A.(2005)undefined Vestn. Samar. Gos. Univ. Fiz-Mat. Nauki 36 10-16
[4]  
Saushkin I.N.(2004)undefined Tr. Petrozavodsk Gos. Univ. Ser. Mat. 11 15-34
[5]  
Platonov S.S.(1998)undefined Mat. Zametki 64 932-942
[6]  
Khromov A.P.(2001)undefined Mat. Sb. 192 33-50
[7]  
Kornev V.V.(1983)undefined Tr. Semin. im. I.G. Petrovskogo 9 190-229
[8]  
Khromov A.P.(1988)undefined Differ. Uravn. 24 1424-1433
[9]  
Shkalikov A.A.(2004)undefined Mat. Zametki 76 97-110
[10]  
Baskakov A.G.(2003)undefined Sovrem. Mat. Fundam. Napravl. 5 3-152