Landau-de Gennes Corrections to the Oseen-Frank Theory of Nematic Liquid Crystals

被引:0
|
作者
Giovanni Di Fratta
Jonathan M. Robbins
Valeriy Slastikov
Arghir Zarnescu
机构
[1] TU Wien,Institute for Analysis and Scientific Computing
[2] University of Bristol,School of Mathematics
[3] IKERBASQUE,undefined
[4] Basque Foundation for Science,undefined
[5] Basque Center for Applied Mathematics (BCAM),undefined
[6] “Simion Stoilow” Institute of the Romanian Academy,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of the minimisers of the Landau-de Gennes model for nematic liquid crystals in a two-dimensional domain in the regime of small elastic constant. At leading order in the elasticity constant, the minimum-energy configurations can be described by the simpler Oseen-Frank theory. Using a refined notion of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-development we recover Landau-de Gennes corrections to the Oseen-Frank energy. We provide an explicit characterisation of minimizing Q-tensors at this order in terms of optimal Oseen-Frank directors and observe the emerging biaxiality. We apply our results to distinguish between optimal configurations in the class of conformal director fields of fixed topological degree saturating the lower bound for the Oseen-Frank energy.
引用
收藏
页码:1089 / 1125
页数:36
相关论文
共 50 条