Connectivity Properties of Factorization Posets in Generated Groups

被引:0
作者
Henri Mühle
Vivien Ripoll
机构
[1] Technische Universität Dresden,Institut für Algebra
[2] Universität Wien,Fakultät für Mathematik
来源
Order | 2020年 / 37卷
关键词
Generated group; Braid group; Hurwitz action; Factorization poset; Shellability; Compatible order; Well-covered poset; Cycle graph; Noncrossing partition lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We consider three notions of connectivity and their interactions in partially ordered sets coming from reduced factorizations of an element in a generated group. While one form of connectivity essentially reflects the connectivity of the poset diagram, the other two are a bit more involved: Hurwitz-connectivity has its origins in algebraic geometry, and shellability in topology. We propose a framework to study these connectivity properties in a uniform way. Our main tool is a certain linear order of the generators that is compatible with the chosen element.
引用
收藏
页码:115 / 149
页数:34
相关论文
共 46 条
  • [1] Armstrong Drew(2009)Generalized noncrossing partitions and combinatorics of Coxeter groups Memoirs of the American Mathematical Society 202 0-0
  • [2] Athanasiadis CA(2007)Shellability of noncrossing partition lattices Proc. Amer. Math. Soc. 135 939-949
  • [3] Brady T(2017)On the Hurwitz action in finite coxeter groups J. Group Theory 20 103-132
  • [4] Watt C(2003)Graph theoretic method for determining Hurwitz equivalence in the symmetric group Israel J. Math. 135 83-91
  • [5] Baumeister B(2003)The dual braid monoid Annales Scientifiques de l’École Normale Supérieure 36 647-683
  • [6] Gobet T(2006)A dual braid Monoid for the free group J. Algebra 302 55-69
  • [7] Roberts K(2015)Finite complex reflection arrangements are K(π, 1) Ann. Math. 181 809-904
  • [8] Wegener P(1997)Some properties of crossings and partitions Discret. Math. 175 41-53
  • [9] Ben-Itzhak T(1980)Shellable and Cohen-Macaulay partially ordered sets Trans. Amer. Math. Soc. 260 159-183
  • [10] Teicher M(1983)On lexicographically shellable posets Trans. Amer. Math. Soc. 277 323-341