Fast multiple-trait genome-wide association analysis for correlated longitudinal measurements

被引:0
作者
Gamal Abdel-Azim
Parth Patel
Shuwei Li
Shicheng Guo
Mary Helen Black
机构
[1] Janssen Res. & Dev. (Johnson & Johnson),
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Large-scale longitudinal biobank data can be leveraged to identify genetic variation contributing to human diseases progression and traits trajectories. While methods for genome-wide association studies (GWAS) of multiple correlated traits have been proposed, an efficient multiple-trait approach to model longitudinal phenotypes is not currently available. We developed GAMUT, a genome-wide association approach for multiple longitudinal traits. GAMUT employs a mixed-effects model to fit longitudinal outcomes where a fast algorithm for inversion by recursive partitioning of the random effects submatrix is introduced. To evaluate performance of the algorithms introduced and assess their statistical power and type I error, stochastic simulation was conducted. Consistent with our expectation, power was greater for cross-sectional (CS) than longitudinal (LT) effects, particularly with a diminishing LT/CS ratio. With a minimum minor allele count of 3 within genotype by time categories, observed type I error was roughly equal to theoretical genome-wide significance. Additionally, 28 blood-based biomarkers measured at 2 time points on participants of the UK Biobank were used to compare GAMUT against single-trait standard and longitudinal GWAS (including rate of change). Across all biomarkers, we observed 539 (CS) and 248 (LT) significant independent variants for the GAMUT method, and 513 (CS) and 30 (LT) for single-trait longitudinal GWAS, respectively. Only 37 variants were identified by modeling rates of change using standard GWAS.
引用
收藏
相关论文
共 50 条
[41]   Genome-wide Association Study of Longitudinal Executive Functions [J].
Wendel, Bernadette ;
Heilbronner, Urs ;
Budde, Monika ;
Kalman, Janos L. ;
Senner, Fanny ;
Andlauer, Till F. M. ;
Comes, Ashley L. ;
Papiol, Sergi ;
Bickeboeller, Heike ;
Schulze, Thomas G. .
GENETIC EPIDEMIOLOGY, 2019, 43 (07) :921-921
[42]   Genome-wide Association Analysis for Mixed Design Under Population Stratification in Genome-wide Association [J].
Won, Sungho ;
Laird, Nan ;
Lange, Christoph .
GENETIC EPIDEMIOLOGY, 2009, 33 (08) :764-764
[43]   Leveraging pleiotropy for joint analysis of genome-wide association studies with per trait interpretations [J].
Taraszka, Kodi ;
Zaitlen, Noah ;
Eskin, Eleazar .
PLOS GENETICS, 2022, 18 (11)
[44]   Genome-wide association analysis and genomic prediction of salt tolerance trait in soybean germplasm [J].
Xu, Rongqing ;
Yang, Qing ;
Liu, Zhi ;
Shi, Xiaolei ;
Wu, Xintong ;
Chen, Yuehan ;
Du, Xinyu ;
Gao, Qiqi ;
He, Di ;
Shi, Ainong ;
Tao, Peijun ;
Yan, Long .
FRONTIERS IN PLANT SCIENCE, 2024, 15
[45]   Fast Genome-Wide QTL Association Mapping with Pedigrees [J].
Zhou, Hua ;
Sobel, Eric ;
Lange, Kenneth .
GENETIC EPIDEMIOLOGY, 2012, 36 (07) :771-772
[46]   Multi-trait analysis for genome-wide association study of five psychiatric disorders [J].
Yulu Wu ;
Hongbao Cao ;
Ancha Baranova ;
Hailiang Huang ;
Sheng Li ;
Lei Cai ;
Shuquan Rao ;
Minhan Dai ;
Min Xie ;
Yikai Dou ;
Qinjian Hao ;
Ling Zhu ;
Xiangrong Zhang ;
Yin Yao ;
Fuquan Zhang ;
Mingqing Xu ;
Qiang Wang .
Translational Psychiatry, 10
[47]   Multi-trait analysis of genome-wide association summary statistics using MTAG [J].
Turley, Patrick ;
Walters, Raymond K. ;
Maghzian, Omeed ;
Okbay, Aysu ;
Lee, James J. ;
Fontana, Mark Alan ;
Tuan Anh Nguyen-Viet ;
Wedow, Robbee ;
Zacher, Meghan ;
Furlotte, Nicholas A. ;
Magnusson, Patrik ;
Oskarsson, Sven ;
Johannesson, Magnus ;
Visscher, Peter M. ;
Laibson, David ;
Cesarini, David ;
Neale, Benjamin M. ;
Benjamin, Daniel J. .
NATURE GENETICS, 2018, 50 (02) :229-+
[48]   Multi-trait analysis of genome-wide association summary statistics using MTAG [J].
Patrick Turley ;
Raymond K. Walters ;
Omeed Maghzian ;
Aysu Okbay ;
James J. Lee ;
Mark Alan Fontana ;
Tuan Anh Nguyen-Viet ;
Robbee Wedow ;
Meghan Zacher ;
Nicholas A. Furlotte ;
Patrik Magnusson ;
Sven Oskarsson ;
Magnus Johannesson ;
Peter M. Visscher ;
David Laibson ;
David Cesarini ;
Benjamin M. Neale ;
Daniel J. Benjamin .
Nature Genetics, 2018, 50 :229-237
[49]   GCTAx: extended genome-wide complex trait analysis [J].
Carey, Greg ;
Pourcain, Beate St. ;
Evans, David ;
Eaves, Lindon .
BEHAVIOR GENETICS, 2015, 45 (06) :646-646
[50]   Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization [J].
Liu, Jin ;
Huang, Jian ;
Ma, Shuangge .
PLOS ONE, 2012, 7 (12)