Fast multiple-trait genome-wide association analysis for correlated longitudinal measurements

被引:0
作者
Gamal Abdel-Azim
Parth Patel
Shuwei Li
Shicheng Guo
Mary Helen Black
机构
[1] Janssen Res. & Dev. (Johnson & Johnson),
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Large-scale longitudinal biobank data can be leveraged to identify genetic variation contributing to human diseases progression and traits trajectories. While methods for genome-wide association studies (GWAS) of multiple correlated traits have been proposed, an efficient multiple-trait approach to model longitudinal phenotypes is not currently available. We developed GAMUT, a genome-wide association approach for multiple longitudinal traits. GAMUT employs a mixed-effects model to fit longitudinal outcomes where a fast algorithm for inversion by recursive partitioning of the random effects submatrix is introduced. To evaluate performance of the algorithms introduced and assess their statistical power and type I error, stochastic simulation was conducted. Consistent with our expectation, power was greater for cross-sectional (CS) than longitudinal (LT) effects, particularly with a diminishing LT/CS ratio. With a minimum minor allele count of 3 within genotype by time categories, observed type I error was roughly equal to theoretical genome-wide significance. Additionally, 28 blood-based biomarkers measured at 2 time points on participants of the UK Biobank were used to compare GAMUT against single-trait standard and longitudinal GWAS (including rate of change). Across all biomarkers, we observed 539 (CS) and 248 (LT) significant independent variants for the GAMUT method, and 513 (CS) and 30 (LT) for single-trait longitudinal GWAS, respectively. Only 37 variants were identified by modeling rates of change using standard GWAS.
引用
收藏
相关论文
共 50 条
[31]   Implementation of genome-wide complex trait analysis to quantify the heritability in multiple myeloma [J].
Mitchell, Jonathan S. ;
Johnson, David C. ;
Litchfield, Kevin ;
Broderick, Peter ;
Weinhold, Niels ;
Davies, Faith E. ;
Gregory, Walter A. ;
Jackson, Graham H. ;
Kaiser, Martin ;
Morgan, Gareth J. ;
Houlston, Richard S. .
SCIENTIFIC REPORTS, 2015, 5
[32]   Implementation of genome-wide complex trait analysis to quantify the heritability in multiple myeloma [J].
Jonathan S. Mitchell ;
David C. Johnson ;
Kevin Litchfield ;
Peter Broderick ;
Niels Weinhold ;
Faith E. Davies ;
Walter A. Gregory ;
Graham H. Jackson ;
Martin Kaiser ;
Gareth J. Morgan ;
Richard S. Houlston .
Scientific Reports, 5
[33]   Fast linear mixed model computations for genome-wide association studies with longitudinal data [J].
Sikorska, Karolina ;
Rivadeneira, Fernando ;
Groenen, Patrick J. F. ;
Hofman, Albert ;
Uitterlinden, Andre G. ;
Eilers, Paul H. C. ;
Lesaffre, Emmanuel .
STATISTICS IN MEDICINE, 2013, 32 (01) :165-180
[34]   Fast and accurate recurrent event analysis for genome-wide association studies [J].
Hof, Jasper P. ;
Vermeulen, Sita H. ;
Coolen, Anthony C. C. ;
Galesloot, Tessel E. .
GENETIC EPIDEMIOLOGY, 2023, 47 (05) :365-378
[35]   SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes [J].
Reedik Mägi ;
Yury V. Suleimanov ;
Geraldine M. Clarke ;
Marika Kaakinen ;
Krista Fischer ;
Inga Prokopenko ;
Andrew P. Morris .
BMC Bioinformatics, 18
[36]   SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes [J].
Magi, Reedik ;
Suleimanov, Yury V. ;
Clarke, Geraldine M. ;
Kaakinen, Marika ;
Fischer, Krista ;
Prokopenko, Inga ;
Morris, Andrew P. .
BMC BIOINFORMATICS, 2017, 18
[37]   Genome-wide association studies of multiple sclerosis [J].
Cotsapas, Chris ;
Mitrovic, Mitja .
CLINICAL & TRANSLATIONAL IMMUNOLOGY, 2018, 7 (06)
[38]   Genome-wide association genetics of an adaptive trait in lodgepole pine [J].
Parchman, Thomas L. ;
Gompert, Zachariah ;
Mudge, Joann ;
Schilkey, Faye D. ;
Benkman, Craig W. ;
Buerkle, C. Alex .
MOLECULAR ECOLOGY, 2012, 21 (12) :2991-3005
[39]   Genome-wide association study of a quantitative disordered gambling trait [J].
Lind, Penelope A. ;
Zhu, Gu ;
Montgomery, Grant W. ;
Madden, Pamela A. F. ;
Heath, Andrew C. ;
Martin, Nicholas G. ;
Slutske, Wendy S. .
ADDICTION BIOLOGY, 2013, 18 (03) :511-522
[40]   Genome-Wide Association Study of Body Weight Trait in Yaks [J].
Wang, Jiabo ;
Li, Xiaowei ;
Peng, Wei ;
Zhong, Jincheng ;
Jiang, Mingfeng .
ANIMALS, 2022, 12 (14)