Lozenge Tilings and Hurwitz Numbers

被引:0
|
作者
Jonathan Novak
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Journal of Statistical Physics | 2015年 / 161卷
关键词
Random tilings; Random matrices; Hurwitz numbers;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new proof of the fact that, near a turning point of the frozen boundary, the vertical tiles in a uniformly random lozenge tiling of a large sawtooth domain are distributed like the eigenvalues of a GUE random matrix. Our argument uses none of the standard tools of integrable probability. In their place, it uses a combinatorial interpretation of the Harish-Chandra/Itzykson-Zuber integral as a generating function for desymmetrized Hurwitz numbers.
引用
收藏
页码:509 / 517
页数:8
相关论文
共 50 条
  • [11] Simple Hurwitz numbers of a disk
    S. M. Natanzon
    Functional Analysis and Its Applications, 2010, 44 : 36 - 47
  • [12] Simple Hurwitz numbers of a disk
    Natanzon, S. M.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (01) : 36 - 47
  • [13] CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (04) : 601 - 633
  • [14] Wall crossings for double Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    ADVANCES IN MATHEMATICS, 2011, 228 (04) : 1894 - 1937
  • [15] MIRROR CURVE OF ORBIFOLD HURWITZ NUMBERS
    Dumitrescu, Olivia
    Mulase, Motohico
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (02): : 307 - 328
  • [16] ON THE RECURSION FORMULA FOR DOUBLE HURWITZ NUMBERS
    Zhu, Shengmao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3749 - 3760
  • [17] Monotone Hurwitz Numbers in Genus Zero
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (05): : 1020 - 1042
  • [18] Bi-pruned Hurwitz numbers
    Hahn, Marvin Anas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 174
  • [19] Towards the geometry of double Hurwitz numbers
    Goulden, IP
    Jackson, DM
    Vakil, R
    ADVANCES IN MATHEMATICS, 2005, 198 (01) : 43 - 92
  • [20] Polynomiality of monotone Hurwitz numbers in higher genera
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    ADVANCES IN MATHEMATICS, 2013, 238 : 1 - 23