Lozenge Tilings and Hurwitz Numbers

被引:0
|
作者
Jonathan Novak
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Journal of Statistical Physics | 2015年 / 161卷
关键词
Random tilings; Random matrices; Hurwitz numbers;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new proof of the fact that, near a turning point of the frozen boundary, the vertical tiles in a uniformly random lozenge tiling of a large sawtooth domain are distributed like the eigenvalues of a GUE random matrix. Our argument uses none of the standard tools of integrable probability. In their place, it uses a combinatorial interpretation of the Harish-Chandra/Itzykson-Zuber integral as a generating function for desymmetrized Hurwitz numbers.
引用
收藏
页码:509 / 517
页数:8
相关论文
共 50 条
  • [1] Lozenge Tilings and Hurwitz Numbers
    Novak, Jonathan
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (02) : 509 - 517
  • [2] BKP and projective Hurwitz numbers
    Sergey M. Natanzon
    Aleksandr Yu. Orlov
    Letters in Mathematical Physics, 2017, 107 : 1065 - 1109
  • [3] BKP and projective Hurwitz numbers
    Natanzon, Sergey M.
    Orlov, Aleksandr Yu.
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (06) : 1065 - 1109
  • [4] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265
  • [5] PRUNED HURWITZ NUMBERS
    Do, Norman
    Norbury, Paul
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (05) : 3053 - 3084
  • [6] Tropical Hurwitz numbers
    Renzo Cavalieri
    Paul Johnson
    Hannah Markwig
    Journal of Algebraic Combinatorics, 2010, 32 : 241 - 265
  • [7] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522
  • [8] Tropical real Hurwitz numbers
    Markwig, Hannah
    Rau, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 501 - 522
  • [9] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03)
  • [10] Hurwitz numbers for real polynomials
    Itenberg, Ilia
    Zvonkine, Dimitri
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) : 441 - 474