Some permutation polynomials over finite fields

被引:0
作者
José E. Marcos
机构
[1] Universidad de Valladolid,Facultad de Ciencias
来源
Applicable Algebra in Engineering, Communication and Computing | 2015年 / 26卷
关键词
Finite field; Permutation polynomial; Complete mapping; 11T06; 12E10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper shows new permutation polynomials over finite fields. Some of them are of the form xpk±x+δs+hx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( x^{p^k}\pm x+\delta \right) ^s +hx$$\end{document}. Some others are complete mappings.
引用
收藏
页码:465 / 474
页数:9
相关论文
共 53 条
[1]  
Akbary A(2011)On constructing permutation polynomials of finite fields Finite Fields Appl. 17 51-67
[2]  
Ghioca D(2008)Two classes of quadratic APN binomials inequivalent to power functions IEEE Trans. Inf. Theory 54 4218-4229
[3]  
Wang Q(2011)New methods for generating permutation polynomials over finite fields Finite Fields Appl. 17 493-503
[4]  
Budaghyan L(1990)Exceptional polynomials and the reducibility of substitution polynomials Enseign. Math. 36 53-65
[5]  
Carlet C(1998)Explicit evaluations of some Weil sums Acta Arith. 83 241-251
[6]  
Leander G(2009)Explicit classes of permutation polynomials of Sci. China Ser. A 53 639-647
[7]  
Cao X(1999)Almost perfect nonlinear power functions on GF IEEE Trans. Inf. Theory 45 1271-1275
[8]  
Hu L(2003): the Welch case Finite Fields Appl. 9 187-193
[9]  
Cohen SD(2014)New Kloosterman sums identities over Acta Arith. 162 51-64
[10]  
Coulter RS(2014) for all Acta Arith. 166 253-278