Signed Roman domination in digraphs

被引:0
作者
S. M. Sheikholeslami
L. Volkmann
机构
[1] Azarbaijan Shahid Madani University,Department of Mathematics
[2] RWTH Aachen University,Lehrstuhl II für Mathematik
来源
Journal of Combinatorial Optimization | 2015年 / 30卷
关键词
Digraph; Signed Roman dominating function; Signed Roman domination number; 05C20; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} be a finite and simple digraph with vertex set V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(D)$$\end{document} and arc set A(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(D)$$\end{document}. A signed Roman dominating function (SRDF) on the digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is a function f:V(D)→{-1,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(D)\rightarrow \{-1,1,2\}$$\end{document} satisfying the conditions that (i) ∑x∈N-[v]f(x)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{x\in N^-[v]}f(x)\ge 1$$\end{document} for each v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document}, where N-[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^-[v]$$\end{document} consists of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} and all in-neighbors of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}, and (ii) every vertex u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} for which f(u)=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=-1$$\end{document} has an in-neighbor v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} for which f(v)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=2$$\end{document}. The weight of an SRDF f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is w(f)=∑v∈V(D)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f)=\sum _{v\in V(D)}f(v)$$\end{document}. The signed Roman domination number γsR(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(D)$$\end{document} of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is the minimum weight of an SRDF on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}. In this paper we initiate the study of the signed Roman domination number of digraphs, and we present different bounds on γsR(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(D)$$\end{document}. In addition, we determine the signed Roman domination number of some classes of digraphs. Some of our results are extensions of well-known properties of the signed Roman domination number γsR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(G)$$\end{document} of graphs G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}.
引用
收藏
页码:456 / 467
页数:11
相关论文
共 50 条
[31]   Domination in digraphs and their direct and Cartesian products [J].
Bresar, Bostjan ;
Kuenzel, Kirsti ;
Rall, Douglas F. .
JOURNAL OF GRAPH THEORY, 2022, 99 (03) :359-377
[32]   The signed Roman domatic number of a graph [J].
Sheikholeslami, Seyed Mahmoud ;
Volkmann, Lutz .
ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 40 :105-112
[33]   The signed (k, k)-domatic number of digraphs [J].
Sheikholeslami, Seyed Mahmoud ;
Volkmann, Lutz .
MATHEMATICAL COMMUNICATIONS, 2012, 17 (02) :537-546
[34]   Signed k-Domatic Numbers of Digraphs [J].
Aram, H. ;
Atapour, M. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) :143-150
[35]   Signed Total k-independence in Digraphs [J].
Volkmann, Lutz .
FILOMAT, 2014, 28 (10) :2121-2130
[36]   Signed total 2-independence in digraphs [J].
Volkmann, Lutz .
UTILITAS MATHEMATICA, 2017, 104 :295-306
[37]   Signed star (j, k)-domatic numbers of digraphs [J].
Sheikholeslami, S. M. ;
Volkmann, L. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (02)
[38]   Signed total (k, k)-domatic number of digraphs [J].
Sheikholeslami, S. M. ;
Volkmann, L. .
AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) :87-96
[39]   Signed total (k, k)-domatic number of digraphs [J].
S. M. Sheikholeslami ;
L. Volkmann .
Aequationes mathematicae, 2012, 83 :87-96
[40]   SIGNED TOTAL k-DOMATIC NUMBERS OF DIGRAPHS [J].
Atapour, Maryam ;
Sheikholeslami, Seyed Mahmoud ;
Volkmann, Lutz .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2011, 35 (03) :359-368