Signed Roman domination in digraphs

被引:0
作者
S. M. Sheikholeslami
L. Volkmann
机构
[1] Azarbaijan Shahid Madani University,Department of Mathematics
[2] RWTH Aachen University,Lehrstuhl II für Mathematik
来源
Journal of Combinatorial Optimization | 2015年 / 30卷
关键词
Digraph; Signed Roman dominating function; Signed Roman domination number; 05C20; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} be a finite and simple digraph with vertex set V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(D)$$\end{document} and arc set A(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(D)$$\end{document}. A signed Roman dominating function (SRDF) on the digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is a function f:V(D)→{-1,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(D)\rightarrow \{-1,1,2\}$$\end{document} satisfying the conditions that (i) ∑x∈N-[v]f(x)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{x\in N^-[v]}f(x)\ge 1$$\end{document} for each v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document}, where N-[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^-[v]$$\end{document} consists of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} and all in-neighbors of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}, and (ii) every vertex u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} for which f(u)=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=-1$$\end{document} has an in-neighbor v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} for which f(v)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=2$$\end{document}. The weight of an SRDF f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is w(f)=∑v∈V(D)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f)=\sum _{v\in V(D)}f(v)$$\end{document}. The signed Roman domination number γsR(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(D)$$\end{document} of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is the minimum weight of an SRDF on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}. In this paper we initiate the study of the signed Roman domination number of digraphs, and we present different bounds on γsR(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(D)$$\end{document}. In addition, we determine the signed Roman domination number of some classes of digraphs. Some of our results are extensions of well-known properties of the signed Roman domination number γsR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(G)$$\end{document} of graphs G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}.
引用
收藏
页码:456 / 467
页数:11
相关论文
共 50 条
  • [21] Extremal digraphs for an upper bound on the Roman domination number
    Lyes Ouldrabah
    Mostafa Blidia
    Ahmed Bouchou
    Journal of Combinatorial Optimization, 2019, 38 : 667 - 679
  • [22] Extremal digraphs for an upper bound on the Roman domination number
    Ouldrabah, Lyes
    Blidia, Mostafa
    Bouchou, Ahmed
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 667 - 679
  • [23] Extremal Digraphs for an Upper Bound on the Double Roman Domination Number
    Lyes Ouldrabah
    Mostafa Blidia
    Ahmed Bouchou
    Lutz Volkmann
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1153 - 1162
  • [24] Extremal Digraphs for an Upper Bound on the Double Roman Domination Number
    Ouldrabah, Lyes
    Blidia, Mostafa
    Bouchou, Ahmed
    Volkmann, Lutz
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1153 - 1162
  • [25] BOUNDS ON THE SIGNED ROMAN k-DOMINATION NUMBER OF A DIGRAPH
    Hao, Guoliang
    Chen, Xiaodan
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 67 - 79
  • [26] The signed Roman domatic number of a digraph
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2015, 3 (01) : 85 - 93
  • [27] On the Rainbow Domination Number of Digraphs
    Hao, Guoliang
    Qian, Jianguo
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1903 - 1913
  • [28] On the Rainbow Domination Number of Digraphs
    Guoliang Hao
    Jianguo Qian
    Graphs and Combinatorics, 2016, 32 : 1903 - 1913
  • [29] Signed k-independence in digraphs
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2014, 94 : 183 - 197
  • [30] Signed 2-independence in digraphs
    Volkmann, Lutz
    DISCRETE MATHEMATICS, 2012, 312 (02) : 465 - 471