Signed Roman domination in digraphs

被引:0
作者
S. M. Sheikholeslami
L. Volkmann
机构
[1] Azarbaijan Shahid Madani University,Department of Mathematics
[2] RWTH Aachen University,Lehrstuhl II für Mathematik
来源
Journal of Combinatorial Optimization | 2015年 / 30卷
关键词
Digraph; Signed Roman dominating function; Signed Roman domination number; 05C20; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} be a finite and simple digraph with vertex set V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(D)$$\end{document} and arc set A(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(D)$$\end{document}. A signed Roman dominating function (SRDF) on the digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is a function f:V(D)→{-1,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(D)\rightarrow \{-1,1,2\}$$\end{document} satisfying the conditions that (i) ∑x∈N-[v]f(x)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{x\in N^-[v]}f(x)\ge 1$$\end{document} for each v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document}, where N-[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^-[v]$$\end{document} consists of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} and all in-neighbors of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}, and (ii) every vertex u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} for which f(u)=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=-1$$\end{document} has an in-neighbor v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} for which f(v)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=2$$\end{document}. The weight of an SRDF f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is w(f)=∑v∈V(D)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f)=\sum _{v\in V(D)}f(v)$$\end{document}. The signed Roman domination number γsR(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(D)$$\end{document} of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is the minimum weight of an SRDF on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}. In this paper we initiate the study of the signed Roman domination number of digraphs, and we present different bounds on γsR(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(D)$$\end{document}. In addition, we determine the signed Roman domination number of some classes of digraphs. Some of our results are extensions of well-known properties of the signed Roman domination number γsR(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{sR}(G)$$\end{document} of graphs G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}.
引用
收藏
页码:456 / 467
页数:11
相关论文
共 50 条
[21]   Extremal digraphs for an upper bound on the Roman domination number [J].
Lyes Ouldrabah ;
Mostafa Blidia ;
Ahmed Bouchou .
Journal of Combinatorial Optimization, 2019, 38 :667-679
[22]   Extremal digraphs for an upper bound on the Roman domination number [J].
Ouldrabah, Lyes ;
Blidia, Mostafa ;
Bouchou, Ahmed .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) :667-679
[23]   Extremal Digraphs for an Upper Bound on the Double Roman Domination Number [J].
Lyes Ouldrabah ;
Mostafa Blidia ;
Ahmed Bouchou ;
Lutz Volkmann .
Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 :1153-1162
[24]   Extremal Digraphs for an Upper Bound on the Double Roman Domination Number [J].
Ouldrabah, Lyes ;
Blidia, Mostafa ;
Bouchou, Ahmed ;
Volkmann, Lutz .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) :1153-1162
[25]   BOUNDS ON THE SIGNED ROMAN k-DOMINATION NUMBER OF A DIGRAPH [J].
Hao, Guoliang ;
Chen, Xiaodan ;
Volkmann, Lutz .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) :67-79
[26]   The signed Roman domatic number of a digraph [J].
Sheikholeslami, Seyed Mahmoud ;
Volkmann, Lutz .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2015, 3 (01) :85-93
[27]   On the Rainbow Domination Number of Digraphs [J].
Hao, Guoliang ;
Qian, Jianguo .
GRAPHS AND COMBINATORICS, 2016, 32 (05) :1903-1913
[28]   On the Rainbow Domination Number of Digraphs [J].
Guoliang Hao ;
Jianguo Qian .
Graphs and Combinatorics, 2016, 32 :1903-1913
[29]   Signed k-independence in digraphs [J].
Volkmann, Lutz .
UTILITAS MATHEMATICA, 2014, 94 :183-197
[30]   Signed 2-independence in digraphs [J].
Volkmann, Lutz .
DISCRETE MATHEMATICS, 2012, 312 (02) :465-471