Integration of mRNA and miRNA analysis reveals the molecular mechanisms of sugar beet (Beta vulgaris L.) response to salt stress

被引:0
|
作者
Ziqiang Zhang
Liang Wang
Wenjin Chen
Zengjuan Fu
Shangmin Zhao
Yuanyuan E
Hui Zhang
Bizhou Zhang
Mengyuan Sun
Pingan Han
Yue Chang
Kuangang Tang
Yanyan Gao
Huizhong Zhang
Xiaodong Li
Wenzhe Zheng
机构
[1] Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences,
[2] Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement,undefined
[3] Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences,undefined
[4] Linxi County Agriculture and Animal Husbandry Bureau,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The continuous increase of saline-alkali areas worldwide has led to the emergence of saline-alkali conditions, which are the primary abiotic stress or hindering the growth of plants. Beet is among the main sources of sugar, and its yield and sugar content are notably affected by saline-alkali stress. Despite sugar beet being known as a salt-tolerant crop, there are few studies on the mechanisms underlying its salt tolerance, and previous studies have mainly delineated the crop’s response to stress induced by NaCl. Recently, advancements in miRNA-mRNA network analysis have led to an increased understanding of how plants, including sugar beet, respond to stress. In this study, seedlings of beet variety "N98122" were grown in the laboratory using hydroponics culture and were exposed to salt stress at 40 days of growth. According to the phenotypic adaptation of the seedlings' leaves from a state of turgidity to wilting and then back to turgidity before and after exposure, 18 different time points were selected to collect samples for analysis. Subsequently, based on the data of real-time quantitative PCR (qRT-PCR) of salt-responsive genes, the samples collected at the 0, 2.5, 7.5, and 16 h time points were subjected to further analysis with experimental materials. Next, mRNA-seq data led to the identification of 8455 differentially expressed mRNAs (DEMs) under exposure to salt stress. In addition, miRNA-seq based investigation retrieved 3558 miRNAs under exposure to salt stress, encompassing 887 known miRNAs belonging to 783 families and 2,671 novel miRNAs. With the integrated analysis of miRNA-mRNA network, 57 miRNA-target gene pairs were obtained, consisting of 55 DEMIs and 57 DEMs. Afterwards, we determined the pivotal involvement of aldh2b7, thic, and δ-oat genes in the response of sugar beet to the effect of salt stress. Subsequently, we identified the miRNAs novel-m035-5p and novel-m0365-5p regulating the aldh gene and miRNA novel-m0979-3p regulating the thic gene. The findings of miRNA and mRNA expression were validated by qRT-PCR.
引用
收藏
相关论文
共 50 条
  • [1] Integration of mRNA and miRNA analysis reveals the molecular mechanisms of sugar beet (Beta vulgaris L.) response to salt stress
    Zhang, Ziqiang
    Wang, Liang
    Chen, Wenjin
    Fu, Zengjuan
    Zhao, Shangmin
    E, Yuanyuan
    Zhang, Hui
    Zhang, Bizhou
    Sun, Mengyuan
    Han, Pingan
    Chang, Yue
    Tang, Kuangang
    Gao, Yanyan
    Zhang, Huizhong
    Li, Xiaodong
    Zheng, Wenzhe
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Salt Stress Induces Complicated miRNA Responses of Sugar Beet (Beta vulgaris L.)
    Zhang, Ziqiang
    Fu, Zengjuan
    Chen, Wenjin
    Wang, Liang
    Zhao, Shangmin
    Yuanyuan, E.
    Zhang, Hui
    Zhang, Bizhou
    Sun, Mengyuan
    Zheng, Wenzhe
    Dong, Jing
    Zhang, Zhiqi
    Ning, Zhihui
    Li, Xiaodong
    Zhang, Huizhong
    SUGAR TECH, 2024, 26 (05) : 1297 - 1305
  • [3] Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress
    Zou, Chunlei
    Liu, Dan
    Wu, Peiran
    Wang, Yubo
    Gai, Zhijia
    Liu, Lei
    Yang, Fangfang
    Li, Caifeng
    Guo, Guanghao
    PLANT MOLECULAR BIOLOGY, 2020, 102 (06) : 645 - 657
  • [4] Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress
    Chunlei Zou
    Dan Liu
    Peiran Wu
    Yubo Wang
    Zhijia Gai
    Lei Liu
    Fangfang Yang
    Caifeng Li
    Guanghao Guo
    Plant Molecular Biology, 2020, 102 : 645 - 657
  • [5] Integration of mRNA and miRNA Analysis Reveals the Molecular Mechanism of Cotton Response to Salt Stress
    Zhan, Jingjing
    Diao, Yangyang
    Yin, Guo
    Sajjad, Muhammad
    Wei, Xi
    Lu, Zhengying
    Wang, Ye
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [6] Gas exchange response of sugar beet (Beta vulgaris L.) cultivars grown under salt stress
    Dadkhah, A.
    Moghtader, S.
    PHOTOSYNTHESIS RESEARCH, 2007, 91 (2-3) : 305 - 306
  • [7] Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress
    Kang, Yichen
    Yang, Xinyu
    Liu, Yuhui
    Shi, Mingfu
    Zhang, Weina
    Fan, Yanling
    Yao, YanHong
    Zhang, Junlian
    Qin, Shuhao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 182 : 938 - 949
  • [8] The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L.
    Bor, M
    Özdemir, F
    Türkan, I
    PLANT SCIENCE, 2003, 164 (01) : 77 - 84
  • [9] Molecular Genetic Investigation of Sugar Beet (Beta vulgaris L.)
    Butorina, A. K.
    Kornienko, A. V.
    RUSSIAN JOURNAL OF GENETICS, 2011, 47 (10) : 1141 - 1150
  • [10] Molecular genetic investigation of sugar beet (Beta vulgaris L.)
    A. K. Butorina
    A. V. Kornienko
    Russian Journal of Genetics, 2011, 47 : 1141 - 1150