H2O activity in albite melts at deep crustal P-T conditions derived from melting experiments in the systems NaAlSi3O8-H2O-CO2 and NaAlSi3O8-H2O-NaCl

被引:0
作者
A. R. Makhluf
R. C. Newton
C. E. Manning
机构
[1] University of California Los Angeles,Department of Earth, Planetary and Space Sciences
来源
Petrology | 2017年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The system NaAlSi3O8 (albite, Ab)-H2O offers a simple and tractable model to study the thermodynamics of the volatile constituent H2O in felsic magmas. Although it has been studied in this context for nearly 100 years, developing a comprehensive model that adequately describes the activity of H2O (aH2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a_{{H_2}O}}$$\end{document}) in hydrous albite liquids and vapors has proven challenging. There are several problems. First, aH2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a_{{H_2}O}}$$\end{document} in hydrous liquids relies on melting experiments in the presence of mixed fluids with reduced H2O activity (H2O-CO2 and H2O-NaCl), but models of aH2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a_{{H_2}O}}$$\end{document} in these coexisting fluids have lacked sufficient accuracy. Second, the role of the solubility of albite in H2O has been assumed to be negligible; however, it is important to take solubility into account at pressure (P) above 0.5 GPa because it becomes sufficiently high that H2O activity at the wet solidus is significantly less than 1. Third, the dry melting temperatures and wet solidus temperatures are inconsistent between the datasets. We address these issues by combining previous experimental work on T–XH2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X_{{H_2}O}}$$\end{document} liquidus relations at 0.5–1.5 GPa with accurate activity formulations for H2O in mixed fluids (Aranovich and Newton, 1996, 1999). This yields isobaric T–aH2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a_{{H_2}O}}$$\end{document} sections at 0.5, 0.7, 1.0 and 1.5 GPa. Data at each isobar were fit to cubic equations, which were used to derive the following equation for liquidus T as a function of aH2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a_{{H_2}O}}$$\end{document} and P: T(aH2O,P)=m0+m1aH2O+m2aH2O2+m3aH2O3°C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\left( {{a_{{H_2}O}},P} \right) = {m_0} + {m_1}{a_{{H_2}O}} + {m_2}a_{{H_2}O}^2 + {{m_3}a_{{H_2}O}^3}^\circ C$$\end{document} where T is °C, m0 = 1119.6 + 112.3P, m1 =–856.5–578.9P, m2 = 1004.1 + 952.9P, and m3 =–477.1–618.0P. The equation is valid at 0.5 < P < 1.5 GPa and Tsolidus < T < Tdry melting. The nonzero solubility of albite in pure H2O is incorporated into the model to give the correct liquidus H2O activity when truncating the model equation in the limiting case where T → Tsolidus at a given pressure. This model equation reproduces both the liquidus-H2O contents and activities from the solubility measurements of Makhluf et al. (2016) in the binary system Ab-H2O at 1.0 GPa. The model equation also accurately reproduces the liquidus H2O activities from Eggler and Kadik (1979) and Bohlen et al. (1982) when the Aranovich and Newton (1999) activity formulation for CO2–H2O mixed fluids is applied to their datasets.
引用
收藏
页码:449 / 457
页数:8
相关论文
共 100 条
[1]  
Anderson G.M.(1983)Feldspar solubility and the transport of aluminum under metamorphic conditions Am. J. Sci. 283 283-297
[2]  
Burnham C.W.(2013)Fluid–mineral equilibria and thermodynamic mixing properties of fluid systems Petrology 21 539-549
[3]  
Aranovich L.Y.(1996)H Contrib. Mineral. Petrol. 125 200-212
[4]  
Aranovich L.Y.(1997)O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite–periclase equilibrium Contrib. Mineral. Petrol. 127 261-271
[5]  
Newton R.C.(1998)H Am. Mineral. 83 193-204
[6]  
Aranovich L.Y.(1999)O activity in concentrated KCl and KCl–NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium Am. Mineral. 84 1319-1332
[7]  
Newton R.C.(1987)Reversed determination of the reaction: phlogopite + quartz = enstatite + potassium feldspar + H Int. Geol. Rev. 29 1379-1401
[8]  
Aranovich L.Y.(2010)O in the range 750–875°C and 2–12 kbar at low H Geochem. Int. 48 446-455
[9]  
Newton R.C.(2013)O activity with concentrated KCl solutions Earth Planet. Sci. Lett. 374 111-120
[10]  
Aranovich L.Y.(2014)Experimental determination of CO Precambrian Res. 253 26-37