Spectral Models for Orthonormal Wavelets and Multiresolution Analysis of L2(ℝ)

被引:0
作者
F. Gómez-Cubillo
Z. Suchanecki
机构
[1] Universidad de Valladolid,Dpto de Análisis Matemático, Facultad de Ciencias
[2] Campus Kirchberg,Université du Luxembourg
[3] University of Opole,Institute of Mathematics and Informatics
来源
Journal of Fourier Analysis and Applications | 2011年 / 17卷
关键词
Orthonormal wavelets; Multiresolution analysis; Spectral representations; Invariant subspaces; 42C40; 47A15; 47A56;
D O I
暂无
中图分类号
学科分类号
摘要
Spectral representations of the dilation and translation operators on L2(ℝ) are built through appropriate bases. Orthonormal wavelets and multiresolution analysis are then described in terms of rigid operator-valued functions defined on the functional spectral spaces. The approach is useful for computational purposes.
引用
收藏
页码:191 / 225
页数:34
相关论文
共 28 条
[1]  
Cohen A.(1990)Ondelettes, analyses multirésolutions et filtres miroirs en quadrature Ann. Inst. H. Poincaré Anal. Non Linéaire 7 439-459
[2]  
Dai X.(1998)Wandering vectors for unitary systems and orthogonal wavelets Mem. Amer. Math. Soc. 134 viii+68-1079
[3]  
Larson D.R.(1992)Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals SIAM J. Math. Anal. 23 1031-654
[4]  
Daubechies I.(2010)Inner functions and local shape of orthonormal wavelets Appl. Comput. Harmon. Anal. 338 639-112
[5]  
Lagarias J.C.(1993)Wavelets in wandering subspaces Trans. Amer. Math. Soc. 208 102-300
[6]  
Gómez-Cubillo F.(1961)Shifts on Hilbert spaces J. Reine Angew. Math. 37 271-61
[7]  
Suchanecki Z.(1994)Multiresolution and wavelets Proc. Edinburgh Math. Soc. (2) 32 57-870
[8]  
Goodman T.N.T.(1991)Necessary and sufficient conditions for constructing orthonormal wavelet bases J. Math. Phys. 114–115 841-236
[9]  
Lee S.L.(1989)Uniform refinement of curves Linear Algebra Appl. 16 233-1094
[10]  
Tang W.S.(1965)On wandering subspaces for unitary operators Proc. Am. Math. Soc. 47 1051-447