Gradient estimates of positive solutions for the weighted nonlinear parabolic equation

被引:0
作者
Rong Mi
机构
[1] Northwest Normal University,College of Mathematics and Statistics
来源
Annals of Functional Analysis | 2023年 / 14卷
关键词
Smooth metric measure space; Gradient estimate; Integral Bakry–Émery Ricci curvature; 58J35; 53C21; 35K08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a Li–Yau type gradient estimate for a positive solution to the weighted nonlinear parabolic type equation (Δϕ-∂t)u(x,t)+a(x,t)u(x,t)lnu(x,t)+b(x,t)u(x,t)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (\Delta _{\phi }-\partial _{t})u(x,t) +a(x,t)u(x,t)\ln u(x,t)+b(x,t)u(x,t)=0 \end{aligned}$$\end{document}on the complete smooth metric measure space under integral Bakry–Émery Ricci curvature bounds. This estimates optimize the obtained conclusions by Zhang and Zhu (J Funct Anal 275:478–515, 2018).
引用
收藏
相关论文
共 44 条
[11]  
Gallot S(2006)Gradient estimate for a nonlinear heat equation on Riemannian manifolds J. Funct. Anal. 241 374-382
[12]  
Hamilton RS(1997)On the parabolic kernel of the Schrödinger operator Geom. Funct. Anal. 7 1031-1045
[13]  
Jiang XR(2001)Gradient estimates for a simple elliptic equation on noncompact Riemannian manifolds Trans. Am. Math. Soc. 353 457-478
[14]  
Li P(2019)Relative volume comparison with integral curvature bounds Proc. Am. Math. Soc. 147 411-426
[15]  
Yau ST(2017)Analysis and geometry on manifolds with integral Ricci curvature bounds. II J. Geom. Anal. 27 1737-1750
[16]  
Ma L(2017)Neumann Li–Yau gradient estimate under integral Ricci curvature bounds Proc. Am. Math. Soc. 145 2199-2210
[17]  
Petersen P(2016)Heat kernel upper bound on Riemannian manifolds with locally uniform Ricci curvature integral bounds Int. Math. Res. Not. IMRN 21 6493-6511
[18]  
Wei GF(2016)The Kato class on compact manifolds with integral bounds on the negative part of Ricci curvature Acta Math. 216 127-176
[19]  
Petersen P(2020)Convergence of Kähler–Ricci flows on lower dimensional algebraic manifolds of general type J. Differ. Equ. 269 1243-1277
[20]  
Wei GF(2019)Regularity of Kähler–Ricci flow on Fano manifolds Pac. J. Math. 29 828-867