Gradient estimates of positive solutions for the weighted nonlinear parabolic equation

被引:0
作者
Rong Mi
机构
[1] Northwest Normal University,College of Mathematics and Statistics
来源
Annals of Functional Analysis | 2023年 / 14卷
关键词
Smooth metric measure space; Gradient estimate; Integral Bakry–Émery Ricci curvature; 58J35; 53C21; 35K08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a Li–Yau type gradient estimate for a positive solution to the weighted nonlinear parabolic type equation (Δϕ-∂t)u(x,t)+a(x,t)u(x,t)lnu(x,t)+b(x,t)u(x,t)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (\Delta _{\phi }-\partial _{t})u(x,t) +a(x,t)u(x,t)\ln u(x,t)+b(x,t)u(x,t)=0 \end{aligned}$$\end{document}on the complete smooth metric measure space under integral Bakry–Émery Ricci curvature bounds. This estimates optimize the obtained conclusions by Zhang and Zhu (J Funct Anal 275:478–515, 2018).
引用
收藏
相关论文
共 44 条
[1]  
Abolarinwa A(2019)Elliptic gradient estimates and Liouville theorems for a weighted nonlinear parabolic equation J. Math. Anal. Appl. 473 297-312
[2]  
Abolarinwa A(2020)Gradient estimates for a weighted nonlinear elliptic equation and Liouville type theorems J. Geom. Phys. 155 1-9
[3]  
Aubry E(2007)Finiteness of Ann. Sci. École Norm. Sup. 40 675-695
[4]  
Aubry E(2009) and geometric inequalities in almost positive Ricci curvature Int. Math. Res. Not. IMRN 10 1933-1946
[5]  
Dai XZ(2000)Bounds on the volume entropy and simplicial volume in Ricci curvature Manuscr. Math. 101 143-152
[6]  
Petersen P(2018)-bounded from below Adv. Math. 325 1-33
[7]  
Wei GF(1988)Integral pinching theorems Asterisque 157 191-216
[8]  
Dai XZ(1982)Local Sobolev constant estimate for integral Ricci curvature bounds J. Differ. Geom. 17 255-306
[9]  
Wei GF(2016)Isoperimetric inequalities based on integral norms of Ricci curvature Proc. Am. Math. Soc. 144 3635-3642
[10]  
Zhang ZL(1986)Three-manifolds with positive Ricci curvature Acta Math. 156 153-201