We study the charmless two-body Λb→Λ(ϕ,η(′))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda _b\rightarrow \Lambda (\phi ,\eta ^{(\prime )})$$\end{document} and three-body Λb→ΛK+K-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda _b\rightarrow \Lambda K^+K^- $$\end{document} decays. We obtain B(Λb→Λϕ)=(3.53±0.24)×10-6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda \phi )=(3.53\pm 0.24)\times 10^{-6}$$\end{document} to agree with the recent LHCb measurement. However, we find that B(Λb→Λ(ϕ→)K+K-)=(1.71±0.12)×10-6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda (\phi \rightarrow )K^+ K^-)=(1.71\pm 0.12)\times 10^{-6}$$\end{document} is unable to explain the LHCb observation of B(Λb→ΛK+K-)=(15.9±1.2±1.2±2.0)×10-6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda K^+ K^-)=(15.9\pm 1.2\pm 1.2\pm 2.0)\times 10^{-6}$$\end{document}, which implies the possibility for other contributions, such as that from the resonant Λb→K-N∗,N∗→ΛK+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda _b\rightarrow K^- N^*,\,N^*\rightarrow \Lambda K^+$$\end{document} decay with N∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N^*$$\end{document} as a higher-wave baryon state. For Λb→Λη(′)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda _b\rightarrow \Lambda \eta ^{(\prime )}$$\end{document}, we show that B(Λb→Λη,Λη′)=(1.47±0.35,1.83±0.58)×10-6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda \eta ,\,\Lambda \eta ^\prime )= (1.47\pm 0.35,1.83\pm 0.58)\times 10^{-6}$$\end{document}, which are consistent with the current data of (9.3-5.3+7.3,<3.1)×10-6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(9.3^{+7.3}_{-5.3},<3.1)\times 10^{-6}$$\end{document}, respectively. Our results also support the relation of B(Λb→Λη)≃B(Λb→Λη′)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda \eta ) \simeq \mathcal{B}(\Lambda _b\rightarrow \Lambda \eta ^\prime )$$\end{document}, given by the previous study.