Study of Λb→Λ(ϕ,η(′))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _b\rightarrow \Lambda (\phi ,\eta ^{(\prime )})$$\end{document} and Λb→ΛK+K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _b\rightarrow \Lambda K^+K^-$$\end{document} decays

被引:0
作者
C. Q. Geng
Y. K. Hsiao
Yu-Heng Lin
Yao Yu
机构
[1] Chongqing University of Posts and Telecommunications,Physics Division
[2] National Center for Theoretical Sciences,Department of Physics
[3] National Tsing Hua University,undefined
来源
The European Physical Journal C | 2016年 / 76卷 / 7期
关键词
Form Factor; Decay Constant; Factorization Approach; LHCb Collaboration; Transition Form Factor;
D O I
10.1140/epjc/s10052-016-4255-x
中图分类号
学科分类号
摘要
We study the charmless two-body Λb→Λ(ϕ,η(′))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _b\rightarrow \Lambda (\phi ,\eta ^{(\prime )})$$\end{document} and three-body Λb→ΛK+K-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _b\rightarrow \Lambda K^+K^- $$\end{document} decays. We obtain B(Λb→Λϕ)=(3.53±0.24)×10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda \phi )=(3.53\pm 0.24)\times 10^{-6}$$\end{document} to agree with the recent LHCb measurement. However, we find that B(Λb→Λ(ϕ→)K+K-)=(1.71±0.12)×10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda (\phi \rightarrow )K^+ K^-)=(1.71\pm 0.12)\times 10^{-6}$$\end{document} is unable to explain the LHCb observation of B(Λb→ΛK+K-)=(15.9±1.2±1.2±2.0)×10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda K^+ K^-)=(15.9\pm 1.2\pm 1.2\pm 2.0)\times 10^{-6}$$\end{document}, which implies the possibility for other contributions, such as that from the resonant Λb→K-N∗,N∗→ΛK+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _b\rightarrow K^- N^*,\,N^*\rightarrow \Lambda K^+$$\end{document} decay with N∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^*$$\end{document} as a higher-wave baryon state. For Λb→Λη(′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _b\rightarrow \Lambda \eta ^{(\prime )}$$\end{document}, we show that B(Λb→Λη,Λη′)=(1.47±0.35,1.83±0.58)×10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda \eta ,\,\Lambda \eta ^\prime )= (1.47\pm 0.35,1.83\pm 0.58)\times 10^{-6}$$\end{document}, which are consistent with the current data of (9.3-5.3+7.3,<3.1)×10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(9.3^{+7.3}_{-5.3},<3.1)\times 10^{-6}$$\end{document}, respectively. Our results also support the relation of B(Λb→Λη)≃B(Λb→Λη′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}(\Lambda _b\rightarrow \Lambda \eta ) \simeq \mathcal{B}(\Lambda _b\rightarrow \Lambda \eta ^\prime )$$\end{document}, given by the previous study.
引用
收藏
相关论文
共 69 条
  • [1] Lu CD(2009)undefined Phys. Rev. D 80 034011-undefined
  • [2] Wang YM(2013)undefined Chin. Phys. C 37 063103-undefined
  • [3] Zou H(2009)undefined Phys. Rev. D 80 094016-undefined
  • [4] Ali A(2015)undefined Phys. Rev. D 91 116007-undefined
  • [5] Kramer G(2015)undefined PoS FPCP 2015 073-undefined
  • [6] Wang S(2015)undefined Phys. Rev. D 91 016006-undefined
  • [7] Huang J(1998)undefined Phys. Rev. D 58 096013-undefined
  • [8] Li G(2004)undefined Phys. Rev. D 69 017901-undefined
  • [9] Wei ZT(2001)undefined Phys. Rev. D 63 054005-undefined
  • [10] Ke HW(2001)undefined Phys. Rev. D 63 114024-undefined