Ekeland’s type variational principle for locally convex cone-valued functions

被引:0
作者
A. Azizi Mayvan
M. R. Motallebi
机构
[1] University of Mohaghegh Ardabili,Department of Mathematics
来源
Journal of Fixed Point Theory and Applications | 2021年 / 23卷
关键词
Locally convex cones; scalarization functions; Ekeland’s variational principle; Primary 58E30; Secondary 46A19; 46A03;
D O I
暂无
中图分类号
学科分类号
摘要
Using the scalarization functions, we present an Ekeland’s type variational principle, where the domain of the objective function is a locally convex cone. Then, we deduce the corresponding versions of Caristi–Kirk’s fixed point theorem and Takahashi’s nonconvex minimization theorem for locally convex cones.
引用
收藏
相关论文
共 18 条
[1]  
Azizi Mayvan A(2020)Pointwise well-posedness and scalarization of optimization problems for locally convex cone-valued functions Filomat 34 1571-1579
[2]  
Motallebi MR(2009)Vector variational principle Arch. Math. (Basel) 93 577-586
[3]  
Bednarczuk EM(1974)On the variational principle J. Math. Anal. Appl. 47 324-353
[4]  
Zagrodny D(1979)Nonconvex minimization problems Bull. Am. Math. Soc. 1 443-474
[5]  
Ekeland I(2000)On the vectorial Ekelands variational principle and minimal point theorems in product spaces Nonlinear Anal. 39 909-922
[6]  
Ekeland I(2013)Versions of Ekelands variational principle involving set perturbations J. Glob. Optim. 57 951-968
[7]  
Göpfert A(2014)Completeness on locally convex cones C. R. Math. Acad. Sci. Paris 352 785-789
[8]  
Tammer C(2012)Products and direct sums in locally convex cones Can. Math. Bull. 55 783-798
[9]  
Zalinescu C(2014)A pre-order principle and set-valued Ekeland variational principle J. Math. Anal. Appl. 419 904-937
[10]  
Khanh PQ(2000)Hahn-Banach type theorems for locally convex cones J. Aust. Math. Soc. A 68 104-125