Hexagon OPE resummation and multi-Regge kinematics

被引:0
作者
J. M. Drummond
G. Papathanasiou
机构
[1] University of Southampton,School of Physics & Astronomy
[2] CERN,Theory Division, Physics Department
[3] LAPTh,undefined
[4] CNRS,undefined
[5] Université de Savoie,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
Supersymmetric gauge theory; Wilson; ’t Hooft and Polyakov loops; Scattering Amplitudes; Extended Supersymmetry;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the 2 → 4 Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.
引用
收藏
相关论文
共 144 条
[1]  
Alday LF(2007)Gluon scattering amplitudes at strong coupling JHEP 06 064-undefined
[2]  
Maldacena JM(2008)Conformal properties of four-gluon planar amplitudes and Wilson loops Nucl. Phys. B 795 385-undefined
[3]  
Drummond JM(2008)On planar gluon amplitudes/Wilson loops duality Nucl. Phys. B 794 231-undefined
[4]  
Korchemsky GP(2008)The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory Nucl. Phys. B 795 52-undefined
[5]  
Sokatchev E(2008)Hexagon Wilson loop = six-gluon MHV amplitude Phys. Rev. D 78 045007-undefined
[6]  
Brandhuber A(2009)Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection Nucl. Phys. B 815 142-undefined
[7]  
Heslop P(2008)Notes on the scattering amplitude/Wilson loop duality JHEP 09 062-undefined
[8]  
Travaglini G(2010)Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes JHEP 12 018-undefined
[9]  
Drummond JM(2011)Classical Polylogarithms for Amplitudes and Wilson Loops JHEP 07 058-undefined
[10]  
Henn J(2010)Bootstrapping the three-loop hexagon Nucl. Phys. B 826 337-undefined