Varieties of BL-Algebras II

被引:0
作者
P. Aglianò
F. Montagna
机构
[1] DIISM University of Siena,
来源
Studia Logica | 2018年 / 106卷
关键词
BL-algebras; Basic logic; Basic hoops;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a poset of subvarieties of BL-algebras, whose completion is the entire lattice of subvarietes; we exhibit also a description of this poset in terms of finite sequences of functions on the natural numbers.
引用
收藏
页码:721 / 737
页数:16
相关论文
共 18 条
  • [1] Agliano P(2017)Varieties of BL-algebras I, revisited Soft Computing 21 153-163
  • [2] Agliano P(2007)Basic hoops: an algebraic study of continuous Studia Logica 87 73-98
  • [3] Ferreirim IMA(2003)-norms Journal of Pure and Applied Algebra 181 105-129
  • [4] Montagna F(2000)Varieties of BL-algebras I: general properties Algebra Universalis 43 233-257
  • [5] Agliano P(2004)On the structure of hoops Studia Logica 76 161-200
  • [6] Montagna F(2004)Equational characterization of the subvarieties of BL generated by t-norm algebras Studia Logica 76 227-240
  • [7] Blok WJ(2002)Equational bases for joins of residuated-lattice varieties Mathematical Logic Quarterly 48 581-601
  • [8] Ferreirim IMA(1986)Universal classes of MV-chains with applications to many-valued logics Journal of Functional Analysis 65 15-63
  • [9] Esteva F(1997)Interpretation of Order 14 1-7
  • [10] Godo L(1939)-algebras in Łukasiewicz sentential calculus Transactions of the American Mathematical Society 45 335-354