Absolute convergence of double series of Fourier-Haar coefficients for functions of bounded p-variation

被引:7
作者
B. I. Golubov
机构
[1] Moscow Institute of Physical Technologies, State University, Dolgoprudnyi, Moscow Region, 141700
基金
俄罗斯基础研究基金会;
关键词
Double Haar system; Fourier-Haar coefficients; Functions of two variables of bounded p-variation;
D O I
10.3103/S1066369X12060011
中图分类号
学科分类号
摘要
We consider functions of two variables of bounded p-variation of the Hardy type on the unit square. For these functions we obtain a sufficient condition for the absolute convergence of series of positive powers of Fourier coefficients with power-type weights with respect to the double Haar system. This condition implies those for the absolute convergence of series of Fourier-Haar coefficients of one-variable functions which have a bounded Wiener p-variation or belong to the class Lip a. We show that the obtained results are unimprovable. We also formulate N-dimensional analogs of the main result and its corollaries. © Allerton Press, Inc., 2012.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 24 条
  • [1] Haar A., Zur Theorie der Orthogonalen Funktionensysteme, Inauguraldissertation, (1909)
  • [2] Haar A., ZurTheorie der Orthogonalen Funktionensysteme, Math. Ann., 69, pp. 331-371, (1910)
  • [3] Faber G., Über die Orthogonalfunktionen des Herrn Haar, Jahresberichte Deutsch. Math. Verein., 19, pp. 104-112, (1910)
  • [4] Schauder J., Zur Theorie Stetiger Abbildungen in Funktionalräumen, Math. Zeit., 26, pp. 47-65, (1927)
  • [5] Schauder J., Eine Eigenschaft des Haarschen Orthogonalsystems, Math. Zeit., 28, pp. 317-320, (1928)
  • [6] Kaczmarz S., Steinhaus H., Theorie der Orthogonaltrihen, (1958)
  • [7] Kashin B.S., Saakyan A.A., Orthogonal Series, (1984)
  • [8] Golubov B.I., Series in haar system, Itogi Nauki i Tekhniki. Matem. Analiz, 1970, pp. 109-148, (1971)
  • [9] Ciesielski Z., Musielak J., On absolute convergence of haar series, Colloq. Math., 7, 1, pp. 61-65, (1959)
  • [10] Ul'yanov P.L., On series in the haar system, Matem. Sborn., 63, 3, pp. 356-391, (1964)