Existence of Periodic Solutions for a 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th-Order Difference Equation Involving p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian

被引:0
作者
Xia Liu
Yuanbiao Zhang
Haiping Shi
Xiaoqing Deng
机构
[1] Hunan Agricultural University,Oriental Science and Technology College
[2] Hunan Agricultural University,Science College
[3] Jinan University,Packaging Engineering Institute
[4] Guangdong Construction Vocational Technology Institute,Modern Business and Management Department
[5] Hunan University of Commerce,School of Mathematics and Statistics
关键词
Periodic solutions; 2; th-order; Nonlinear difference equation; Discrete variational theory; -Laplacian; 39A23;
D O I
10.1007/s40840-014-0066-0
中图分类号
学科分类号
摘要
Using the critical point theory, the existence of periodic solutions for a 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th-order nonlinear difference equation containing both advance and retardation involving p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian is obtained. The main approaches used in our paper are variational techniques and the Saddle Point Theorem. The problem is to solve the existence of periodic solutions for a 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th-order p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian difference equation. The obtained results successfully generalize and complement the existing ones.
引用
收藏
页码:1107 / 1125
页数:18
相关论文
共 66 条
[21]  
Xia H(2001)Existence of periodic and subharmonic solutions for second-order superlinear difference equations Acta Appl. Math. 65 295-303
[22]  
Yu JS(1994)The existence of periodic and subharmonic solutions of subquadratic second order difference equations Rocky Mt. J. Math. 24 233-251
[23]  
Fang H(1978)Existence of positive solutions of Commun. Pure Appl. Math. 31 157-184
[24]  
Zhao DP(1980)-Laplacian difference equations Commun. Pure Appl. Math. 33 609-633
[25]  
Guo ZM(2008)Twin positive solutions of boundary value problems for finite difference equations with Commun. Math. Anal. 5 50-59
[26]  
Yu JS(1997)-Laplacian operator J. Funct. Anal. 149 266-275
[27]  
Guo ZM(2008)Existence of nonconstant periodic solutions for a nonlinear discrete system involving the J. Appl. Math. Comput. 26 333-340
[28]  
Yu JS(2001)-Laplacian J. Math. Anal. Appl. 257 189-205
[29]  
Guo ZM(2006)Global attractivity for a nonlinear difference equation with variable delay J. Differ. Equ. 231 18-31
[30]  
Yu JS(2011)Existence of nonoscillatory solutions of some higher order difference equations Sci. China Math. 54 83-93