Existence of Periodic Solutions for a 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th-Order Difference Equation Involving p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian

被引:0
作者
Xia Liu
Yuanbiao Zhang
Haiping Shi
Xiaoqing Deng
机构
[1] Hunan Agricultural University,Oriental Science and Technology College
[2] Hunan Agricultural University,Science College
[3] Jinan University,Packaging Engineering Institute
[4] Guangdong Construction Vocational Technology Institute,Modern Business and Management Department
[5] Hunan University of Commerce,School of Mathematics and Statistics
关键词
Periodic solutions; 2; th-order; Nonlinear difference equation; Discrete variational theory; -Laplacian; 39A23;
D O I
10.1007/s40840-014-0066-0
中图分类号
学科分类号
摘要
Using the critical point theory, the existence of periodic solutions for a 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th-order nonlinear difference equation containing both advance and retardation involving p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian is obtained. The main approaches used in our paper are variational techniques and the Saddle Point Theorem. The problem is to solve the existence of periodic solutions for a 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th-order p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian difference equation. The obtained results successfully generalize and complement the existing ones.
引用
收藏
页码:1107 / 1125
页数:18
相关论文
共 66 条
[1]  
Agarwal RP(2005)Multiple positive solutions of singular discrete Adv. Differ. Equ. 2005 93-99
[2]  
Perera K(1994)-Laplacian problems via variational methods Comput. Math. Appl. 28 1-9
[3]  
O’Regan D(1998)The Comput. Math. Appl. 2 521-529
[4]  
Ahlbrandt CD(2006)-disconjugacy of a 2 J. Differ. Equ. Appl. 10 889-896
[5]  
Peterson AC(2004)th-order linear difference equation J. Differ. Equ. Appl. 10 529-539
[6]  
Anderson D(1979)A 2 Invent. Math. 52 241-273
[7]  
Anderson DR(2007)th-order linear difference equation Adv. Differ. Equ. 2007 1-9
[8]  
Avery RI(2011)Existence of solutions for a one dimensional Appl. Math. Comput. 217 4408-4415
[9]  
Henderson J(1981)-Laplacian on time-scales J. Differ. Equ. 40 1-6
[10]  
Avery RI(2005)Existence of three positive pseudo-symmetric solutions for a one dimensional discrete Discret. Contin. Dyn. Syst. 12 983-996