General controllability and observability tests for Takagi-Sugeno fuzzy systems

被引:0
作者
J. A. Meda-Campaña
J. de J. Rubio
C. Aguilar-Ibañez
R. Tapia-Herrera
R. Gonzalez-Salazar
R. A. Rodriguez-Manzanarez
G. Lopez-Contreras
J. O. Hernandez-Monterrosas
I. Elias
D. R. Cruz
机构
[1] Campus Zacatenco del Instituto Politécnico Nacional,Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingenieria Mecanica y Electrica
[2] Instituto Politécnico Nacional,Sección de Estudios de Posgrado e Investigación, Esime Azcapotzalco
[3] Instituto Politécnico Nacional,Centro de Investigación en Computación
[4] Universidad Tecnológica de la Mixteca,undefined
来源
Evolving Systems | 2020年 / 11卷
关键词
Takagi-Sugeno fuzzy models; Fuzzy controllability; Fuzzy observability;
D O I
暂无
中图分类号
学科分类号
摘要
An approach for investigating controllability and observability properties in Takagi-Sugeno (TS) fuzzy systems is given. The proposed method is independent of the number of fuzzy rules acting at the same instant and independent of the number of inputs and outputs included in the TS fuzzy model. Therefore, it can be applied to a wide class of fuzzy systems. The analysis relies on the solution of a set of symbolic simultaneous equations with the fuzzy weights as the unknowns of such equations.
引用
收藏
页码:349 / 358
页数:9
相关论文
共 51 条
[1]  
Angelov P(2013)Density-based averaging—a new operator for data fusion Inf Sci 222 163-174
[2]  
Yager R(2004)On-Line Evolution of Takagi-Sugeno Fuzzy Models IFAC Proceedings Volumes 37 67-72
[3]  
Angelov Plamen(2011)An approach to automatic real-time novelty detection, object identification, and tracking in video streams based on recursive density estimation and evolving Takagi-Sugeno fuzzy systems Int J Intell Syst 26 189-205
[4]  
Victor José(2014)Dynamically evolving clustering and its application to structure identification of evolving fuzzy models IEEE Trans Cybern 44 1619-1631
[5]  
Dourado António(2005)Ackermann-like eigenvalues assigment formulae for linear time-varying systems IEE Proc Control Theory Appl 152 427-434
[6]  
Filev Dimitar(2015)Evolving granular fuzzy model-based control of nonlinear dynamic systems IEEE Trans Fuzzy Syst 23 923-938
[7]  
Angelov P(2018)On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs IEEE Access 6 31968-31973
[8]  
Sadeghi-Tehran P(2012)Exact output regulation for nonlinear systems described by Takagi-Sugeno fuzzy models IEEE Trans Fuzzy Syst 20 235-247
[9]  
Ramezani R(2015)Analysis of the fuzzy controllability property and stabilization for a class of t-s fuzzy models IEEE Trans Fuzzy Syst 23 291-301
[10]  
Baruah RD(2018)Design of stabilizers and observers for a class of multivariable ts fuzzy models on the basis of new interpolation functions IEEE Trans Fuzzy Syst 26 2649-2662