Reflection symmetries of q-bernoulli polynomials

被引:3
作者
Kupershmidt B.A. [1 ]
机构
[1] University of Tennessee, Space Institute, Tullahoma
关键词
D O I
10.2991/jnmp.2005.12.s1.34
中图分类号
学科分类号
摘要
A large part of the theory of classical Bernoulli polynomials B n(x)'s follows from their reflection symmetry around x = 1/2: B n(1 - x) = (-1)n Bn(x). This symmetry not only survives quantization but has two equivalent forms, classical and quantum, depending upon whether one reflects around 1/2 the classical x or quantum [x]q.
引用
收藏
页码:412 / 422
页数:10
相关论文
共 7 条
  • [1] Carlitz L., q-bernoulli numbers and polynomials, Duke Math, J., 15, pp. 987-1000, (1948)
  • [2] Fairlie D.B., Veselov A.P., Faulhaber and bernoulli polynomials and solitons, Phys. D, 152-153, pp. 47-50, (2001)
  • [3] Knuth D.E., Johann faulhaber and sums of powers, Math. Comp., 61, pp. 277-294, (1993)
  • [4] Kupershmidt B.A., You Are a Bad Zeta Function, Aren't You?
  • [5] Tsumura H., A note on q-analogues of the dirichlet series and q-bernoulli numbers, J. Number Theory, 39, pp. 251-256, (1991)
  • [6] Tsumura H., A note on q-analogues of dirichlet series, Proc. Japan Acad., 75, pp. 23-25, (1999)
  • [7] Weil A., Elliptic Functions According to Eisenstein and Kronecker, (1976)