On Total Regularity of Mixed Graphs with Order Close to the Moore Bound

被引:0
作者
James Tuite
Grahame Erskine
机构
[1] Open University,
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Degree-diameter problem; Mixed graphs; Almost Moore graphs; Total regularity; Excess; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The undirected degree/diameter and degree/girth problems and their directed analogues have been studied for many decades in the search for efficient network topologies. Recently such questions have received much attention in the setting of mixed graphs, i.e. networks that admit both undirected edges and directed arcs. The degree/diameter problem for mixed graphs asks for the largest possible order of a network with diameter k, maximum undirected degree ≤r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le r$$\end{document} and maximum directed out-degree ≤z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le z$$\end{document}. Similarly one can search for the smallest possible k-geodetic mixed graphs with minimum undirected degree ≥r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge r$$\end{document} and minimum directed out-degree ≥z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge z$$\end{document}. A simple counting argument reveals the existence of a natural bound, the Moore bound, on the order of such graphs; a graph that meets this limit is a mixed Moore graph. Mixed Moore graphs can exist only for k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = 2$$\end{document} and even in this case it is known that they are extremely rare. It is therefore of interest to search for graphs with order one away from the Moore bound. Such graphs must be out-regular; a much more difficult question is whether they must be totally regular. For k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = 2$$\end{document}, we answer this question in the affirmative, thereby resolving an open problem stated in a recent paper of López and Miret. We also present partial results for larger k. We finally put these results to practical use by proving the uniqueness of a 2-geodetic mixed graph with order exceeding the Moore bound by one.
引用
收藏
页码:1253 / 1272
页数:19
相关论文
共 44 条
[1]  
Bannai E(1973)On finite Moore graphs J. Fac. Sci. Tokyo Univ. 20 191-208
[2]  
Ito T(1997)Regular graphs with excess one Discr. Math. 77 99-118
[3]  
Bannai E(2005)Complete characterization of almost Moore digraphs of degree three J. Graph Theory 48 112-126
[4]  
Ito T(1979)Partially directed Moore graphs Math. Slovaca 29 181-196
[5]  
Baskoro ET(1980)On the impossibility of directed Moore graphs J. Combin. Theory B 29 339-341
[6]  
Miller M(2016)A revised Moore bound for mixed graphs Discr. Math. 339 2066-2069
[7]  
Širáň J(2017)The unique mixed almost Moore graphs with parameters J. Int. Net. 17 1741005-90
[8]  
Sutton M(1980) and Networks 10 87-504
[9]  
Bosák J(1960)Maximum degree in graphs of diameter 2 IBM J. Res. Develop. 4 497-1016
[10]  
Bridges WG(2015)On Moore graphs with diameter 2 and 3 Discr. Math. 338 1011-45