Convex but not Strictly Convex Central Configurations

被引:0
作者
Antonio Carlos Fernandes
Braulio Augusto Garcia
Luis Fernando Mello
机构
[1] Universidade Federal de Itajubá,Instituto de Matemática e Computação
来源
Journal of Dynamics and Differential Equations | 2018年 / 30卷
关键词
Central configuration; -body problem; Convex central configuration; Stacked central configuration; 70F10; 70F15; 37N05e;
D O I
暂无
中图分类号
学科分类号
摘要
Central configurations of the n-body problem have been studied for more than 200 years since the pioneer works of Euler and Lagrange. In this article we study convex central configurations which are not strictly convex. We give explicit examples of such configurations in both planar and spatial n-body problems. Particularly, in the spatial case, we consider regular polyhedra with bodies of same mass m at the vertices and bodies of same mass M at the middle points of each edge. In this setting we prove that the cube is the unique regular polyhedron such that this construction leads to a convex central configuration which is not strictly convex.
引用
收藏
页码:1427 / 1438
页数:11
相关论文
共 30 条
[1]  
Albouy A(2012)Finiteness of central configurations of five bodies in the plane Ann. Math. 176 535-588
[2]  
Kaloshin V(1989)Symmetric central configurations of the spatial J. Geom. Phys. 6 367-394
[3]  
Cedó F(1918)-body problem Bull. Astron. 35 321-389
[4]  
Llibre J(2012)Sur certaines trajectoires du problème des J. Dyn. Diff. Equ. 24 119-128
[5]  
Chazy J(2008) corps J. Geom. Phys. 58 1241-1252
[6]  
Chen K-C(1767)Convex central configurations of the Novi Comm. Acad. Sci. Imp. Petrop. 11 144-151
[7]  
Hsiao J-S(2013)-body problem which are not strictly convex Qual. Theory Dyn. Syst. 12 293-303
[8]  
Corbera M(2013)Central configurations of nested regular polyhedra for the spatial J. Math. Anal. Appl. 405 320-325
[9]  
Llibre J(2010)-body problem Celest. Mech. Dyn. Astron. 106 89-107
[10]  
Euler L(2005)De moto rectilineo trium corporum se mutuo attahentium Nonlinearity 18 2299-2304