Multi-level optimal fusion algorithm for infrared and visible image

被引:0
|
作者
Bo-Lin Jian
Ching-Che Tu
机构
[1] National Chin-Yi University of Technology,Department of Electrical Engineering
来源
Signal, Image and Video Processing | 2023年 / 17卷
关键词
Image fusion; Weighted least squares; Gradient weight map; Multilayer image decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both infrared and grayscale visible image. As a first step, the base and detail layers of the image are obtained through the multilayer image decomposition method. For the base layer, we select a fusion method based on the gradient weight map to address the loss of feature details inherent in the average fusion strategy. For the detail layer analysis, we use a weighted least squares-based fusion strategy to mitigate the impact of noise. In this research, the database containing various settings is used to verify the robustness of this methodology. The result is also used to compare with other types of fusion methods in order to provide subjective kind of method and objective kind of image indicator for easier verification. The fusion result indicated that this research method not only reduces noise in the infrared images but also maintains the desired global contrast. As a result, the fusion process can retrieve more feature details while preserving the structure of the feature area.
引用
收藏
页码:4209 / 4217
页数:8
相关论文
共 50 条
  • [21] Feature-Level Fusion Algorithm of Infrared Image and Visible Image for Object Identification in the Forest
    Yu, Zheng
    Zhang, Yuanyuan
    Ding, Xiaokang
    Zhu, Yuting
    Yan, Lei
    INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND AUTOMATION (ICECA 2014), 2014, : 701 - 705
  • [22] Image fusion using a multi-level image decomposition and fusion method
    Tian, Yu
    Yang, Wenjing
    Wang, Ji
    APPLIED OPTICS, 2021, 60 (24) : 7466 - 7479
  • [23] Fusion algorithm of UAV infrared image and visible image registration
    Shi, Yonghua
    Jiang, Xishun
    Li, Shukun
    SOFT COMPUTING, 2023, 27 (02) : 1061 - 1073
  • [24] Multi-level filter for infrared image processing
    Zheng Zhaoqing
    Zhang Tianxu
    Shen Xubang
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2006, 27 (12): : 1625 - 1637
  • [25] MULTI-LEVEL FILTER FOR INFRARED IMAGE PROCESSING
    Zheng Zhaoqing
    Zhang Tianxu
    Shen Xubang
    International Journal of Infrared and Millimeter Waves, 2006, 27 : 1625 - 1637
  • [26] Edge preserving infrared and visible image fusion with three layer decomposition based on multi-level co-occurrence filtering
    Sankar, P. Arathi
    Jayakumar, E. P.
    INFRARED PHYSICS & TECHNOLOGY, 2024, 139
  • [27] An Infrared and Visible Image Fusion Algorithm Based on MAP
    Kang Kai
    Liu Tingting
    Wang Tianyun
    Nian Fuchun
    Xu Xianchun
    17TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN2018), 2019, 11048
  • [28] A Noisy Infrared and Visible Light Image Fusion Algorithm
    Shen, Yu
    Xiang, Keyun
    Chen, Xiaopeng
    Liu, Cheng
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2021, 17 (05): : 1004 - 1019
  • [29] Infrared and visible image fusion based on FRC algorithm
    Dai L.-Y.
    Liu G.
    Xiao G.
    Ruan J.-J.
    Zhu J.-L.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (11): : 2690 - 2698
  • [30] Image fusion scheme of pixel-level for infrared and visible image
    Wang Jia
    Jiang Xiaoyu
    Ji Bogong
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 1246 - 1249