The Asymptotically Flat Scalar-Flat Yamabe Problem with Boundary

被引:0
作者
Stephen McCormick
机构
[1] University of New England,School of Science and Technology
[2] Kungliga Tekniska Högskolan,Institutionen för Matematik
来源
The Journal of Geometric Analysis | 2017年 / 27卷
关键词
Yamabe problem; Asymptotically flat manifold; Scalar curvature; 58J05; 53C21; 53A30; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two cases of the asymptotically flat scalar-flat Yamabe problem on a non-compact manifold with inner boundary in dimension n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}. First, following arguments of Cantor and Brill in the compact case, we show that given an asymptotically flat metric g, there is a conformally equivalent asymptotically flat scalar-flat metric that agrees with g on the boundary. We then replace the metric boundary condition with a condition on the mean curvature: given a function f on the boundary that is not too large, we show that there is an asymptotically flat scalar-flat metric, conformally equivalent to g whose boundary mean curvature is given by f. The latter case involves solving an elliptic PDE with critical exponent using the method of sub- and supersolutions. Both results require the usual assumption that the Sobolev quotient is positive.
引用
收藏
页码:2269 / 2277
页数:8
相关论文
共 18 条
[1]  
Bartnik R(1986)The mass of an asymptotically flat manifold Commun. Pure. Appl. Math. 39 661-693
[2]  
Bartnik R(1989)New definition of quasilocal mass Phys. Rev. Lett. 62 845-885
[3]  
Cantor M(1979)A necessary and sufficient condition for York data to specify an asymptotically flat spacetime J. Math. Phys. 20 1741-1744
[4]  
Cantor M(1979)Some problems of global analysis on asymptotically simple manifolds Compos. Math. 38 3-35
[5]  
Cantor M(1981)The laplacian on asymptotically flat manifolds and the specification of scalar curvature Compos. Math. 43 317-330
[6]  
Brill D(1992)Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary Ann. Math. 136 1-50
[7]  
Escobar JF(1992)The Yamabe problem on manifolds with boundary J. Differ. Geom. 35 21-84
[8]  
Escobar JF(1996)Conformal metrics with prescribed mean curvature on the boundary Calc. Var. Partial Differ. Equ. 4 559-592
[9]  
Escobar JF(1975)Scalar curvature and conformal deformation of riemannian structure J. Differ. Geom. 10 113-134
[10]  
Kazdan JL(1987)The Yamabe problem Bull. Am. Math. Soc. 17 37-91