A Posteriori Error Analysis for Implicit–Explicit hp-Discontinuous Galerkin Timestepping Methods for Semilinear Parabolic Problems

被引:0
|
作者
Andrea Cangiani
Emmanuil H. Georgoulis
Mohammad Sabawi
机构
[1] University Park,School of Mathematical Sciences
[2] University of Leicester,School of Mathematics and Actuarial Science
[3] National Technical University of Athens,Department of Mathematics, School of Applied Mathematical and Physical Sciences
[4] IACM-FORTH,Department of Mathematics, College of Education for Women
[5] Tikrit University,undefined
来源
Journal of Scientific Computing | 2020年 / 82卷
关键词
error analysis; Semilinear PDEs; -discontinuous Galerkin timestepping; Space–time finite element methods; Reconstructions; Implicit–explicit timestepping methods;
D O I
暂无
中图分类号
学科分类号
摘要
A posteriori error estimates in the L∞(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty (\mathcal {H})$$\end{document}- and L2(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2(\mathcal {V})$$\end{document}-norms are derived for fully-discrete space–time methods discretising semilinear parabolic problems; here V↪H↪V∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {V}\hookrightarrow \mathcal {H}\hookrightarrow \mathcal {V}^*$$\end{document} denotes a Gelfand triple for an evolution partial differential equation problem. In particular, an implicit–explicit variable order (hp-version) discontinuous Galerkin timestepping scheme is employed, in conjunction with conforming finite element discretisation in space. The nonlinear reaction is treated explicitly, while the linear spatial operator is treated implicitly, allowing for time-marching without the need to solve a nonlinear system per timestep. The main tool in obtaining these error estimates is a recent space–time reconstruction proposed in Georgoulis et al. (A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems, Submitted for publication) for linear parabolic problems, which is now extended to semilinear problems via a non-standard continuation argument. Some numerical investigations are also included highlighting the optimality of the proposed a posteriori bounds.
引用
收藏
相关论文
共 50 条