Scalar control of a group of free-running oscillators

被引:0
作者
A. A. Galyaev
机构
[1] Russian Academy of Sciences,Trapeznikov Institute of Control Sciences
来源
Automation and Remote Control | 2016年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a system consisting of an arbitrary number of free-running oscillators, consideration was given to the problem of speed. The system is governed by a bounded scalar control, the terminal point being defined by the desired configuration of oscillations. Solution of the problem was illustrated by examples.
引用
收藏
页码:1511 / 1523
页数:12
相关论文
共 11 条
  • [1] Galyaev A.A.(2009)Problem of Optimal Oscillator Control for Nulling its Energy under Bounded Control Action Autom. Remote Control 70 366-374
  • [2] Galyaev A.A.(2010)On One Problem of Optimal Control at the Impact Phase and Unification of the Interaction End Instants Autom. Remote Control 71 2055-2066
  • [3] Prourzin V.A.(2007)A Constrained Scalar Control for the Motion of a System of Oscillators with Damping Residual Oscillations J. Comput. Syst. Sci. Int. 46 521-531
  • [4] Reshmin S.A.(2007)Speed-optimal Design of Control of Nonlinear Pendulum Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen. 1 13-22
  • [5] Chernous’ko F.L.(2013)Design of Bounded Control for an Oscillator System Vestn. Nizhegorodsk. Univ. im. N.I. Lobachevskogo 1 278-283
  • [6] Ovseevich A.I.(1990)Decomposition and Suboptimal Control in Dynamic Systems Prikl. Mat. Mekh. 54 883-893
  • [7] Fedorov A.K.(1992)Design of Control of Nonlinear Dynamic System Prikl. Mat. Mekh. 56 179-191
  • [8] Chernous’ko F.L.(2002)Method of Decomposition in the Problem of Tracking Trajectories of Mechanical Systems, Izv. Ross. Akad. Nauk Teor. Sist. Upravlen. 5 25-32
  • [9] Chernous’ko F.L.(undefined)undefined undefined undefined undefined-undefined
  • [10] Anan’evskiy I.M.(undefined)undefined undefined undefined undefined-undefined