Compactness of certain class of singular minimal hypersurfaces

被引:0
|
作者
Akashdeep Dey
机构
[1] Princeton University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2022年 / 61卷
关键词
53C42; 53A10; 49Q20;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Mk}k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{M_k\}_{k=1}^{\infty }$$\end{document} be a sequence of closed, singular, minimal hypersurfaces in a closed Riemannian manifold (Nn+1,g),n+1≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N^{n+1},g), n+1 \ge 3$$\end{document}. Suppose, the volumes of Mk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k$$\end{document} are uniformly bounded from above and the pth Jacobi eigenvalues λp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p$$\end{document}’s of Mk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k$$\end{document} are uniformly bounded from below. Then we will prove that there exists a closed, singular, minimal hypersurface M in N, with the above-mentioned volume and eigenvalue bounds, such that, possibly after passing to a subsequence, Mk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_k$$\end{document} weakly converges (in the sense of varifolds) to M, possibly with multiplicities. Moreover, the convergence is smooth and graphical over the compact subsets of reg(M)\Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$reg(M) \setminus {\mathcal {Y}}$$\end{document}, where Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Y}}$$\end{document} is a finite subset of reg(M) with |Y|≤p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{\mathcal {Y}}|\le p-1$$\end{document}. As a corollary, we get the compactness of the space of closed, singular, minimal hypersurfaces with uniformly bounded volume and index. These results generalize the previous theorems of Ambrozio–Carlotto–Sharp (J Geom Anal 26(4):2591–2601, 2016) and Sharp (J Differ Geom 106(2):317–339, 2017) in higher dimensions. We will also show that if Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} is a singular, minimal hypersurface with Hn-2(sing(Σ))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}^{n-2}(sing(\varSigma ))=0$$\end{document}, then the index of the varifold associated to Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} coincides with the index of reg(Σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$reg(\varSigma )$$\end{document} (with respect to compactly supported normal vector fields on reg(Σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$reg(\varSigma )$$\end{document}).
引用
收藏
相关论文
共 50 条