Sharp Condition for Inhomogeneous Nonlinear Schrödinger Equations by Cross-Invariant Manifolds

被引:0
作者
Qiang Lin
Chao Yang
机构
[1] Harbin Engineering University,College of Intelligent Systems Science and Engineering
[2] University of Craiova,Department of Mathematics
[3] China-Romania Research Center in Applied Mathematics,College of Mathematical Sciences
[4] Harbin Engineering University,Faculty of Applied Mathematics
[5] AGH University of Science and Technology,undefined
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Inhomogeneous nonlinear Schrödinger equation; Sharp condition; Cross-invariant manifolds; Global existence; Finite time blowup; Primary 35Q55; 35A01; Secondary 35B44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a class of cross constrained variational problem for the inhomogeneous nonlinear Schrödinger equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. By constructing cross-invariant manifolds, we derive a sharp condition for blow-up phenomenon and global well-posedness of solutions.
引用
收藏
相关论文
共 49 条
[1]  
Berestycki H(1981)Instability of stationary states in nonlinear Schrödinger and Klein–Gordon equations C. R. Acad. Sci. Paris 293 489-492
[2]  
Cazenave T(2021)Blow-up of radial solutions for the intercritical inhomogeneous NLS equation J. Funct. Anal. 281 715-736
[3]  
Cardoso M(2010)On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient Czechoslovak Math. J. 60 357-367
[4]  
Farah LG(2007)Sharp global existence and blowing up results for inhomogeneous Schrödinger equations Discret. Contin. Dyn. Syst. Ser. B 8 483-500
[5]  
Chen JQ(2016)Classification of minimal mass blow-up solutions for an J. Evol. Equ. 16 169-188
[6]  
Chen JQ(2018) critical inhomogeneous NLS Nonlinear Anal. 174 4765-4811
[7]  
Guo BL(2021)Blowup of SIAM J. Math. Anal. 53 193-208
[8]  
Combet V(2016) solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation J. Evol. Equ. 16 311-330
[9]  
Genoud F(2021)Long time dynamics of nonradial solutions to inhomogeneous nonlinear Schrödinger equations Adv. Nonlinear Anal. 10 70-112
[10]  
Dinh VD(2021)Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation J. Differ. Equ. 295 137-186