Convergence properties of Kemp’s q-binomial distribution

被引:3
作者
Gerhold S. [1 ,3 ]
Zeiner M. [2 ,4 ]
机构
[1] Vienna University of Technology, Vienna
[2] Graz University of Technology, Graz
[3] Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna
[4] Graz University of Technology, Steyrergasse 30, Graz
来源
Sankhya A | 2010年 / 72卷 / 2期
基金
奥地利科学基金会;
关键词
-binomial distribution; discrete normal distribution; Heine distribution; -Krawtchouk polynomials; -Charlier polynomials; Mellin transform; limit theorems; Primary 60F05; secondary 33D15;
D O I
10.1007/s13171-010-0019-0
中图分类号
学科分类号
摘要
We consider Kemp’s q-analogue of the binomial distribution. Several convergence results involving the classical binomial, the Heine, the discrete normal, and the Poisson distribution are established. Some of them are q-analogues of classical convergence properties. From the results about distributions, we deduce some new convergence results for (q-)Krawtchouk and q-Charlier polynomials. Besides elementary estimates, we apply Mellin transform asymptotics. © 2010, Indian Statistical Institute.
引用
收藏
页码:331 / 343
页数:12
相关论文
共 15 条
[1]  
Benkherouf L., Bather J.A., Oil exploration: sequential decisions in the face of uncertainty, J. Appl. Probab., 25, pp. 529-543, (1988)
[2]  
Christiansen J.S., Koelink E., Self-adjoint difference operators and classical solutions to the Stieltjes-Wigert moment problem, J. Approx. Theory, 140, pp. 1-26, (2006)
[3]  
Flajolet P., Gourdon X., Dumas P., Mellin transforms and asymptotics: harmonic sums, Theoret. Comput. Sci., 144, pp. 3-58, (1995)
[4]  
Gasper G., Rahman M., Basic Hypergeometric Series, 35, (1990)
[5]  
de Haan L., Ferreira A., Extreme Value Theory. An Introduction, (2006)
[6]  
Johnson N.L., Kemp A.W., Kotz S., Univariate Discrete Distributions, (2005)
[7]  
Kemp A., Kemp C., Weldon’s dice data revisited, Amer. Statist., 45, pp. 216-222, (1991)
[8]  
Kemp A.W., Heine-Euler extensions of the Poisson distribution, Comm. Statist. Theory Methods, 21, pp. 571-588, (1992)
[9]  
Kemp A.W., Steady-state Markov chain models for the Heine and Euler distributions, J. Appl. Probab., 29, pp. 869-876, (1992)
[10]  
Kemp A.W., Certain q-analogues of the binomial distribution, Sankhyā Ser. A, 64, pp. 293-305, (2002)