Kiepert (1873) and Brioschi (1864) published algebraic equations for the n-division points of an elliptic curve, in terms of the Weierstrass ℘-function and its derivatives with respect to a uniformizing parameter, or another elliptic function, respectively. We generalize both types of formulas for a compact Riemann surface which, outside from one point, has a smooth polynomial equation in the plane, in the sense that we characterize the points whose n-th multiple in the Jacobian belongs to the theta divisor.