A generalized Kiepert formula for Cab curves

被引:0
作者
Shigeki Matsutani
Emma Previato
机构
[1] 8-21-1 Higashi-Linkan,Institut Mittag
[2] The Royal Swedish Academy of Sciences,Leffer
[3] Boston University,Department of Mathematics and Statistics
来源
Israel Journal of Mathematics | 2009年 / 171卷
关键词
Riemann Surface; Elliptic Curve; Compact Riemann Surface; Hyperelliptic Curve; Weierstrass Point;
D O I
暂无
中图分类号
学科分类号
摘要
Kiepert (1873) and Brioschi (1864) published algebraic equations for the n-division points of an elliptic curve, in terms of the Weierstrass ℘-function and its derivatives with respect to a uniformizing parameter, or another elliptic function, respectively. We generalize both types of formulas for a compact Riemann surface which, outside from one point, has a smooth polynomial equation in the plane, in the sense that we characterize the points whose n-th multiple in the Jacobian belongs to the theta divisor.
引用
收藏
页码:305 / 323
页数:18
相关论文
共 22 条
  • [1] Arita S.(2003)An addition algorithm in Jacobian of C Discrete Applied Mathematics 130 13-31
  • [2] Birkenhake Ch.(2003) curves Compositio Mathematica 135 323-330
  • [3] Vanhaecke P.(2005)The vanishing of the theta function in the KP direction: a geometric approach Journal of Nonlinear Mathematical Physics 12 46-62
  • [4] Braden H. W.(1864)Bilinear recurrences and addition formulae for hyperelliptic sigma functions Comptes Rendus Mathématique. Académiedes Sciences. Paris 59 769-775
  • [5] Enolskii V. Z.(1999)Sur quelques formules pour la multiplication des fonctions elliptiques Functional Analysis and its Applications 33 83-94
  • [6] Hone A. N. W.(1928)Rational analogues of abelian functions Proceedings of the Royal Society of Edinburgh. Section A 118 557-583
  • [7] Brioschi F.(1994)Commutative ordinary differential operators Journal fur die Reine und Angewandte Mathematik 447 91-145
  • [8] Bukhshtaber V. M.(2006)On the analogue of the division polynomials for hyperelliptic curves Finite Fields and their Applications 12 78-102
  • [9] Leikin D. V.(1918)Counting points on C Rendiconti del Circolo Matematico di Palermo 43 155-191
  • [10] Enol’skiii V. Z.(1873) curves using Monsky-Washnitzer cohomology Journal für die Reine und Angewandte Mathematik 76 21-33