Quadratic difference operators in Lp-spaces

被引:0
作者
Czerwik S. [1 ]
Dłutek K. [1 ]
机构
[1] Silesian University of Technology, Institute of Mathematics, PL-44-100 Gliwice
关键词
Quadratic difference operator; Quadratic functional equation; Stability;
D O I
10.1007/s00010-003-2709-3
中图分类号
学科分类号
摘要
Let (G, +, ∑,μ) be an abelian complete measurable group with μ(G) < +∞ and let E be a Banach space. For any f: G → E we define the quadratic difference operator Qf by Qf(x,y):= 2f(x) + 2f(y) - f(x + y) - f(x - y), x, y ∈ G. We will prove that if Qf ∈ L μ×μp(G × G, E) for a certain 1 ≤ p ≤ +∞, then there exists exactly one quadratic function K: G → E, i.e. K satisfying the functional equation 2f(x) + 2f(y) = f(x + y) + f(x - y), x,y ∈ G and a constant G such that ||f - K||p≤C||Qf|| p. Moreover, the operator Qf: LP(G, E) → L p(G × G, E) is linear, continuous and invertible.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 21 条
[1]  
Cholewa P., Remarks on the stability of the functional equations, Aequationes Math., 27, pp. 76-86, (1984)
[2]  
Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62, pp. 59-64, (1992)
[3]  
Czerwik S., The stability of quadratic functional equation, Stability of Mappings of Hyers-ulam Type, pp. 81-91, (1994)
[4]  
Czerwik S., Dlutek K., Spaces
[5]  
Czerwik S., Dlutek K., Superstability of the equation of quadratic functionals in L <sup>p</sup>-spaces, Aequationes Math., 63, pp. 210-219, (2002)
[6]  
Dunford N., Schwartz J., Linear Operators, Part 1, (1958)
[7]  
Forti G.L., Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50, pp. 143-190, (1995)
[8]  
Ger R., On almost polynomial functions, Colloq. Math., 24, pp. 95-101, (1971)
[9]  
Ger R., Note on almost additive functions, Aequationes Math., 17, pp. 73-76, (1978)
[10]  
Ger R., A survey of recent results on stability of functional equations, Proc. of the 4th Internat. Conference on Functional Equations and Inequalities, pp. 5-36, (1994)