On the control of time discretized dynamic contact problems

被引:0
作者
Georg Müller
Anton Schiela
机构
[1] University of Bayreuth,Chair of Applied Mathematics
来源
Computational Optimization and Applications | 2017年 / 68卷
关键词
Dynamic contact; Optimal control; Strong stationarity; Time discretization; 49J20; 49K20; 65K15; 74H15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider optimal control problems with distributed control that involve a time-stepping formulation of dynamic one body contact problems as constraints. We link the continuous and the time-stepping formulation by a nonconforming finite element discretization and derive existence of optimal solutions and strong stationarity conditions. We use this information for a steepest descent type optimization scheme based on the resulting adjoint scheme and implement its numerical application.
引用
收藏
页码:243 / 287
页数:44
相关论文
共 77 条
  • [51] Klapproth C(undefined)undefined undefined undefined undefined-undefined
  • [52] Schiela A(undefined)undefined undefined undefined undefined-undefined
  • [53] Deuflhard P(undefined)undefined undefined undefined undefined-undefined
  • [54] Kornhuber R(undefined)undefined undefined undefined undefined-undefined
  • [55] Krause R(undefined)undefined undefined undefined undefined-undefined
  • [56] Kornhuber R(undefined)undefined undefined undefined undefined-undefined
  • [57] Krause R(undefined)undefined undefined undefined undefined-undefined
  • [58] Sander O(undefined)undefined undefined undefined undefined-undefined
  • [59] Deuflhard P(undefined)undefined undefined undefined undefined-undefined
  • [60] Ertel S(undefined)undefined undefined undefined undefined-undefined