On the control of time discretized dynamic contact problems

被引:0
作者
Georg Müller
Anton Schiela
机构
[1] University of Bayreuth,Chair of Applied Mathematics
来源
Computational Optimization and Applications | 2017年 / 68卷
关键词
Dynamic contact; Optimal control; Strong stationarity; Time discretization; 49J20; 49K20; 65K15; 74H15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider optimal control problems with distributed control that involve a time-stepping formulation of dynamic one body contact problems as constraints. We link the continuous and the time-stepping formulation by a nonconforming finite element discretization and derive existence of optimal solutions and strong stationarity conditions. We use this information for a steepest descent type optimization scheme based on the resulting adjoint scheme and implement its numerical application.
引用
收藏
页码:243 / 287
页数:44
相关论文
共 77 条
  • [1] Ahn J(2009)Dynamic frictionless contact in linear viscoelasticity IMA J. Numer. Anal. 29 43-71
  • [2] Stewart DE(2008)A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE Computing 82 121-138
  • [3] Bastian P(2008)A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework Computing 82 103-119
  • [4] Blatt M(2009)Space adaptive finite element methods for dynamic Signorini problems Comput. Mech. 44 481-491
  • [5] Dedner A(2015)A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes ESAIM Math. Model. Numer. Anal. 49 481-502
  • [6] Engwer C(2000)Analysis of a class of implicit evolution inequalities associated to viscoelastic dynamic contact problems with friction Int. J. Eng. Sci. 38 1535-1552
  • [7] Klöfkorn R(2008)A contact-stabilized newmark method for dynamical contact problems Int. J. Numer. Methods Eng. 73 1274-1290
  • [8] Kornhuber R(2011)Time-integration schemes for the finite element dynamic Signorini problem SIAM J. Sci. Comput. 33 223-249
  • [9] Ohlberger M(2008)A stable energy-conserving approach for frictional contact problems based on quadrature formulas Int. J. Numer. Methods Eng. 73 205-225
  • [10] Sander O(2008)A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction SIAM J. Sci. Comput. 30 572-596