Closure spaces and completions of posets

被引:0
作者
Dongsheng Zhao
机构
[1] Nanyang Technological University,Mathematics and Mathematics Education, National Institute of Education
来源
Semigroup Forum | 2015年 / 90卷
关键词
Subset selection; -completion; Continuous poset; Closure space;
D O I
暂无
中图分类号
学科分类号
摘要
Let Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document} be a subset selection. A Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}-completion of poset P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} is a Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}-complete poset EZ(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{\mathcal {Z}}}}(P)$$\end{document} together with a monotone mapping from P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} into EZ(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{{\mathcal {Z}}}}(P)$$\end{document} that preserves existing suprema of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}-sets and is universal among such mappings. First, for each subset selection Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}, we define two closure operators ρZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{{{\mathcal {Z}}}}$$\end{document} and ρ^Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\rho }_{{{\mathcal {Z}}}}$$\end{document} on each poset. We prove that if Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document} satisfies some natural conditions then: (i) for each poset the Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}-completion exists; (ii) each poset and its Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}-completion have isomorphic lattices of ρ^Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\rho }_{{{\mathcal {Z}}}}$$\end{document}-closed sets; (iii) for any Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}-continuous poset the Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}-completion is Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {Z}}}$$\end{document}-continuous. The results obtained here include the dcpo-completions and chain-completions of posets as special cases. From the general result, we also derive the sup-completions of posets.
引用
收藏
页码:545 / 555
页数:10
相关论文
共 18 条
[1]  
Bandelt H-J(1983)The category of J. Pure Appl. Algebra 30 219-226
[2]  
Erné M(2001)-continuous posets Appl. Categorical Struct. 9 41-63
[3]  
Erné M(2009)Z-join spectra of Z-supercompactly generated lattices Ann. Pure Appl. Logic 159 292-306
[4]  
Zhao D(1976)D-completions and the d-topology Algebra Universalis 6 53-68
[5]  
Keimel K(1952)Chain-complete posets and directed sets with applications Proc. Am. Math. Soc. 3 677-680
[6]  
Lawson JD(1988)Completely distributive complete lattices Houst. J. Math. 14 583-600
[7]  
Markowsky G(1978)Union-complete subset systems Theoret. Comput. Sci. 7 57-77
[8]  
Raney GN(2006)A uniform approach to inductive posets and inductive closure Topol. Appl. 153 1886-1894
[9]  
Venugopalan G(1987)Continuity of posets via Scott topology and sobrification J. Math. Anal. Appl. 128 64-79
[10]  
Wright JB(2005)N-compactness in L-fuzzy topological spaces J. Math. Anal. Appl. 309 701-708