Preliminary group classification of quasilinear third-order evolution equations

被引:0
作者
Ding-jiang Huang
Hong-qing Zhang
机构
[1] East China University of Science and Technology,Department of Mathematics
[2] Dalian University of Technology,Department of Applied Mathematics
来源
Applied Mathematics and Mechanics | 2009年 / 30卷
关键词
quasilinear third-order evolution equations; group classification; classical infinitesimal Lie method; equivalence transformation group; abstract Lie algebras; O175.24; O175.29; O152.5; 35K55; 35K25; 35Q53; 17B80; 58D19;
D O I
暂无
中图分类号
学科分类号
摘要
Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six nonequivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.
引用
收藏
页码:275 / 292
页数:17
相关论文
共 37 条
[1]  
Gazeau J. P.(1992)Symmetries of variable coefficient Korteweg-de Vries equations J. Math. Phys. 33 4087-4102
[2]  
Winternitza P.(2004)Symmetry classification of KdV-type nonlinear evolution equations J. Math. Phys. 45 2280-2313
[3]  
Güngör F.(2001)The structure of Lie algebras and the classification problem for partial differential equations Acta Applicandae Mathematicae 69 43-94
[4]  
Lahno V. I.(1995)Allowed transformations and symmetry class of variable-coefficient Burgers equations IMA J. Appl. Math. 54 203-225
[5]  
Zhdanov R. Z.(2007)Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations J. Math. Phys. 48 073507-7418
[6]  
Basarab-Horwath P.(1999)Group classification of heat conductivity equations with a nonlinear source J. Phys. A: Math. Gen. 32 7405-313
[7]  
Lahno V.(2005)Group classification of nonlinear wave equations J. Math. Phys. 46 053301-7076
[8]  
Zhdanov R.(2006)Group classification and exact solutions of nonlinear wave equations Acta Appl. Math. 91 253-2804
[9]  
Qu C.(2005)Group classification of the general evolution equation: local and quasilocal symmetries SIGMA 1 009-328
[10]  
Huang D.(1993)Symmetry classes of variable coefficient nonlinear Schrödinger equations J. Phys. A: Math. Gen. 26 7061-5576