On the study of the positive solutions of a BVP under ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Riemann–Liouville fractional derivative via upper and lower solution method

被引:0
作者
Brahim Tellab
Zaid Laadjal
Bochra Azzaoui
机构
[1] Kasdi Merbah University,Applied Mathematics Laboratory
[2] University Center of Illizi,Department of Mathematics and Computer Science
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷 / 1期
关键词
-Riemann–Liouville fractional derivative; Positive solution; Upper and lower solution; Fixed point theorem; 34A08; 34B15; 34A12; 58C30;
D O I
10.1007/s12215-023-00900-9
中图分类号
学科分类号
摘要
In this paper, we study the existence and uniqueness of a positive solution for a boundary value problem of nonlinear fractional integro-differential equations involving a generalized version of the Riemann–Liouville fractional derivative with respect to another function ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} and integral boundary conditions. Using the Banach’s contraction principle and Schaefer’s fixed point theorem together with the upper and lower solution method we prove our main results. Finally, an example is presented to illuminate our theoretical results.
引用
收藏
页码:99 / 112
页数:13
相关论文
共 58 条
[1]  
Abdellouahab N(2022)Existence and stability results of a nonlinear fractional integro-differential equation with integral boundary condition Kragujevac J. Math 46 685-699
[2]  
Tellab B(2017)A Caputo fractional derivative of a function with respect to another function Commun. Nonlinear Sci. Numer. Simul. 44 460-481
[3]  
Zennir KH(2017)A Caputo fractional derivative of a function with respect to another function Commun. Nonlinear Sci. Numer. Simul. 44 460-481
[4]  
Almeida R(2022)Positive solutions for integral nonlinear boundary value problem in fractional Sobolev spaces Math. Methods Appl. Sci. 44 3509-3520
[5]  
Almeida R(2022)Positive solutions for a fractional configuration of the Riemann-Liouville semilinear differential equation Math. Matical Methods Appl Sci 1 458-1373
[6]  
Azzaoui B(2021)Some results for initial value problem of nonlinear fractional equation in Sobolev space J. Appl. Math. Comput. 1 428-15
[7]  
Tellab B(2021)Existence and uniqueness results for initial value problem of nonlinear fractional integro-differential equation on an unbounded domain in a weighted Banach space Math. Methods Appl. Sci. 24 1369-3690
[8]  
Zennir Kh(2021)On a generalized fractional boundary value problem based on the thermostat model and its numerical solutions via Bernstein polynomials Adv Differ Equ 1 142-80
[9]  
Azzaoui B(2021)Approximate solutions and Hyers-Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform Adv Differ Equ 6 1-91
[10]  
Tellab B(2011)Multiple integral equations arising in the theory of water waves Appl. Math. Lett. 37 3672-414